River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane Tracking.

King Hann Lim, Kah Phooi Seng, Li-Minn Ang

    Research output: Contribution to journalArticlepeer-review

    24 Citations (Scopus)

    Abstract

    A novel lane detection technique using adaptive line segment and river flow method is proposed in this paper to estimate driving lane edges. A Kalman filtering-based B-spline tracking model is also presented to quickly predict lane boundaries in consecutive frames. Firstly, sky region and road shadows are removed by applying a regional dividing method and road region analysis, respectively. Next, the change of lane orientation is monitored in order to define an adaptive line segment separating the region into near and far fields. In the near field, a 1D Hough transform is used to approximate a pair of lane boundaries. Subsequently, river flow method is applied to obtain lane curvature in the far field. Once the lane boundaries are detected, a B-spline mathematical model is updated using a Kalman filter to continuously track the road edges. Simulation results show that the proposed lane detection and tracking method has good performance with low complexity.
    Original languageEnglish
    Article number465819
    Pages (from-to)1-10
    Number of pages10
    JournalInternational Journal of Vehicular Technology
    Volume2012
    DOIs
    Publication statusPublished - 2012

    Fingerprint

    Dive into the research topics of 'River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane Tracking.'. Together they form a unique fingerprint.

    Cite this