TY - JOUR
T1 - RNA binding properties of SOX family members
AU - Ghafoori, Seyed Mohammad
AU - Sethi, Ashish
AU - Petersen, Gayle F.
AU - Tanipour, Mohammad Hossein
AU - Gooley, Paul R.
AU - Forwood, Jade K.
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/7/16
Y1 - 2024/7/16
N2 - SOX proteins are a family of transcription factors (TFs) that play critical functions in sex determination, neurogenesis, and chondrocyte differentiation, as well as cardiac, vascular, and lymphatic development. There are 20 SOX family members in humans, each sharing a 79-residue L-shaped high mobility group (HMG)-box domain that is responsible for DNA binding. SOX2 was recently shown to interact with long non-coding RNA and large-intergenic non-coding RNA to regulate embryonic stem cell and neuronal differentiation. The RNA binding region was shown to reside within the HMG-box domain; however, the structural details of this binding remain unclear. Here, we show that all SOX family members, except group H, interact with RNA. Our mutational experiments demonstrate that the disordered C-terminal region of the HMG-box domain plays an important role in RNA binding. Further, by determining a high-resolution structure of the HMG-box domain of the group H family member SOX30, we show that despite differences in RNA binding ability, SOX30 shares a very similar secondary structure with other SOX protein HMG-box domains. Together, our study provides insight into the interaction of SOX TFs with RNA.
AB - SOX proteins are a family of transcription factors (TFs) that play critical functions in sex determination, neurogenesis, and chondrocyte differentiation, as well as cardiac, vascular, and lymphatic development. There are 20 SOX family members in humans, each sharing a 79-residue L-shaped high mobility group (HMG)-box domain that is responsible for DNA binding. SOX2 was recently shown to interact with long non-coding RNA and large-intergenic non-coding RNA to regulate embryonic stem cell and neuronal differentiation. The RNA binding region was shown to reside within the HMG-box domain; however, the structural details of this binding remain unclear. Here, we show that all SOX family members, except group H, interact with RNA. Our mutational experiments demonstrate that the disordered C-terminal region of the HMG-box domain plays an important role in RNA binding. Further, by determining a high-resolution structure of the HMG-box domain of the group H family member SOX30, we show that despite differences in RNA binding ability, SOX30 shares a very similar secondary structure with other SOX protein HMG-box domains. Together, our study provides insight into the interaction of SOX TFs with RNA.
KW - HMG-box
KW - RNA binding
KW - SOX
UR - http://www.scopus.com/inward/record.url?scp=85199612615&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85199612615&partnerID=8YFLogxK
U2 - 10.3390/cells13141202
DO - 10.3390/cells13141202
M3 - Article
C2 - 39056784
AN - SCOPUS:85199612615
SN - 2073-4409
VL - 13
SP - 1
EP - 16
JO - Cells
JF - Cells
IS - 14
M1 - 1202
ER -