TY - JOUR
T1 - Seroprevalence of feline immunodeficiency virus and feline leukaemia virus in Australia
T2 - Risk factors for infection and geographical influences (2011-2013)
AU - Westman, Mark E
AU - Paul, Amanda
AU - Malik, Richard
AU - McDonagh, Phillip
AU - Ward, Michael P
AU - Hall, Evelyn
AU - Norris, Jacqueline M
N1 - Includes bibliographical references.
PY - 2016
Y1 - 2016
N2 - Objectives: Our aim was to: (i) determine the current seroprevalence of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) in three large cohorts of cats from Australia; and (ii) investigate potential risk factors for retroviral infection. Methods: Cohort 1 (n = 2151 for FIV, n = 2241 for FeLV) consisted of cats surrendered to a shelter on the west coast of Australia (Perth, Western Australia [WA]). Cohort 2 (n = 2083 for FIV, n = 2032 for FeLV) consisted of client owned cats with outdoor access recruited from around Australia through participating veterinary clinics. Cohort 3 (n = 169 for FIV, n = 166 for FeLV) consisted of cats presenting to Murdoch University Veterinary Hospital for a variety of reasons. Fresh whole blood was collected and tested using a commercially available point-of-care lateral flow ELISA kit that detects p27 FeLV antigen and antibodies to FIV antigens (p15 and p24) (cohorts 1 and 2), or one of two lateral flow immunochromatography kits that detect p27 antigen and antibodies to FIV antigen (p24 and/or gp40) (cohort 3). Data recorded for cats in cohort 2 included signalment, presenting complaint and postcode, allowing investigation of risk factors for FIV or FeLV infection, as well as potential geographical ‘hot spots’ for infection. Results: The seroprevalence of FIV was 6% (cohort 1), 15% (cohort 2) and 14% (cohort 3), while the seroprevalence of FeLV was 1%, 2% and 4% in the same respective cohorts. Risk factors for FIV infection among cats in cohort 2 included age (>3 years), sex (male), neutering status (entire males) and location (WA had a significantly higher FIV seroprevalence compared with the Australian Capital Territory, New South Wales and Victoria). Risk factors for FeLV infection among cats in cohort 2 included health status (‘sick’) and location (WA cats were approximately three times more likely to be FeLVinfected compared with the rest of Australia). No geographical hot spots of FIV infection were identified. Conclusions and relevance: Both FIV and FeLV remain important infections among Australian cats. WA has a higher seroprevalence of both feline retroviruses compared with the rest of Australia, which has been noted in previous studies. A lower neutering rate for client-owned male cats is likely responsible for the higher seroprevalence of FIV infection in WA cats, while the reason for the higher seroprevalence of FeLV in WA cats is currently unknown.
AB - Objectives: Our aim was to: (i) determine the current seroprevalence of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) in three large cohorts of cats from Australia; and (ii) investigate potential risk factors for retroviral infection. Methods: Cohort 1 (n = 2151 for FIV, n = 2241 for FeLV) consisted of cats surrendered to a shelter on the west coast of Australia (Perth, Western Australia [WA]). Cohort 2 (n = 2083 for FIV, n = 2032 for FeLV) consisted of client owned cats with outdoor access recruited from around Australia through participating veterinary clinics. Cohort 3 (n = 169 for FIV, n = 166 for FeLV) consisted of cats presenting to Murdoch University Veterinary Hospital for a variety of reasons. Fresh whole blood was collected and tested using a commercially available point-of-care lateral flow ELISA kit that detects p27 FeLV antigen and antibodies to FIV antigens (p15 and p24) (cohorts 1 and 2), or one of two lateral flow immunochromatography kits that detect p27 antigen and antibodies to FIV antigen (p24 and/or gp40) (cohort 3). Data recorded for cats in cohort 2 included signalment, presenting complaint and postcode, allowing investigation of risk factors for FIV or FeLV infection, as well as potential geographical ‘hot spots’ for infection. Results: The seroprevalence of FIV was 6% (cohort 1), 15% (cohort 2) and 14% (cohort 3), while the seroprevalence of FeLV was 1%, 2% and 4% in the same respective cohorts. Risk factors for FIV infection among cats in cohort 2 included age (>3 years), sex (male), neutering status (entire males) and location (WA had a significantly higher FIV seroprevalence compared with the Australian Capital Territory, New South Wales and Victoria). Risk factors for FeLV infection among cats in cohort 2 included health status (‘sick’) and location (WA cats were approximately three times more likely to be FeLVinfected compared with the rest of Australia). No geographical hot spots of FIV infection were identified. Conclusions and relevance: Both FIV and FeLV remain important infections among Australian cats. WA has a higher seroprevalence of both feline retroviruses compared with the rest of Australia, which has been noted in previous studies. A lower neutering rate for client-owned male cats is likely responsible for the higher seroprevalence of FIV infection in WA cats, while the reason for the higher seroprevalence of FeLV in WA cats is currently unknown.
U2 - 10.1177/2055116916646388
DO - 10.1177/2055116916646388
M3 - Article
C2 - 28491420
SN - 2055-1169
VL - 2
SP - 1
EP - 11
JO - Journal of Feline Medicine and Surgery Open Reports
JF - Journal of Feline Medicine and Surgery Open Reports
IS - 1
ER -