Abstract
Particle flow problems are encountered in many scientific and engineering topics, such as solid-fluid interaction. A multi-relaxation time (MRT) lattice Boltzmann (LB) method was developed to simulate a solid particle moving in a fluid. The curved surface of the particle on a uniform Cartesian grid was treated by using the interpolated bounce-back scheme. The momentum exchange method was applied to calculate the hydrodynamic force acting on the solid particle. The approximate equilibrium distribution functions were employed to directly obtain the unknown distribution functions at the new nodes from the moving particle. The proposed method was verified by two classical cases describing particle moving in a channel in two dimensions. The numerical accuracy, stability and efficiency of the proposed method in dealing with complex geometric boundaries were compared with the finite element results published in the literature. The proposed method is proven more efficient than the finite element method in particle flow simulation.
Original language | English |
---|---|
Pages | 29-29 |
Number of pages | 1 |
Publication status | Published - 2019 |
Event | 4th Australasian Conference on Computational Mechanics - University of Tasmania, Sandy Bay Campus , Hobart, Australia Duration: 27 Nov 2019 → 29 Nov 2019 https://www.utas.edu.au/__data/assets/pdf_file/0008/1284398/ACCM-4-Conference-Handbook.pdf https://www.utas.edu.au/accm-2019 (Conference website) |
Conference
Conference | 4th Australasian Conference on Computational Mechanics |
---|---|
Country/Territory | Australia |
City | Hobart |
Period | 27/11/19 → 29/11/19 |
Internet address |