TY - JOUR
T1 - Starch structure modulates metabolic activity and gut microbiota profile
AU - Zhou, Zhongkai
AU - Zhang, Yan
AU - Zheng, Paiyun
AU - Chen, Xiaoshan
AU - Yang, Yan
PY - 2013/12/1
Y1 - 2013/12/1
N2 - Normal maize starch and high amylose maize starch (HAS) either in native or thermally treated forms were used to investigate the effect of starch structure on the production of metabolites and gut microbiota profile using an anaerobic invitro system. The changes in starch structure during fermentation were investigated using scanning electron microscopy (SEM), high-performance liquid chromatography (HPLC) and Fourier transform infra-red spectroscopy (FTIR). The native normal starch showed a porous structure during fermentation, indicating it was quickly metabolized by gut bacteria, whereas the HAS showed a smooth structure, suggesting it was utilized gradually. HPLC chromatography showed that amylose fraction with low molecular weight (MW) had a higher resistance to be fermented by gut bacteria than other starch molecular fractions. Thermal treatment enhanced starch fermentation kinetics, especially for amylopectin and high MW amylose fractions. FTIR analysis suggests that the structure of the normal starch, either in native or thermally treated, was less organized compared to HAS, and this structural character led to the normal starch to be utilized more quickly by gut bacteria with a faster increase in the IR ratio 1047/1022cm-1 (P<0.01) during fermentation. The measurement of metabolic activity indicates that the normal starch with a less organized structure was utilized faster and generated more acetate and lactate during fermentation; HAS with a highly organized structure was more likely to produce butyrate, corresponding the significant increase (P<0.001) in the populations of butyrate-producing strains (Faecalibacterium prausnitzii and Eubacterium hallii) in the cultures. This study reveals that fermentation kinetics of starch substrate is one of important characteristics for manipulating gut microbiota fermentation behaviours.
AB - Normal maize starch and high amylose maize starch (HAS) either in native or thermally treated forms were used to investigate the effect of starch structure on the production of metabolites and gut microbiota profile using an anaerobic invitro system. The changes in starch structure during fermentation were investigated using scanning electron microscopy (SEM), high-performance liquid chromatography (HPLC) and Fourier transform infra-red spectroscopy (FTIR). The native normal starch showed a porous structure during fermentation, indicating it was quickly metabolized by gut bacteria, whereas the HAS showed a smooth structure, suggesting it was utilized gradually. HPLC chromatography showed that amylose fraction with low molecular weight (MW) had a higher resistance to be fermented by gut bacteria than other starch molecular fractions. Thermal treatment enhanced starch fermentation kinetics, especially for amylopectin and high MW amylose fractions. FTIR analysis suggests that the structure of the normal starch, either in native or thermally treated, was less organized compared to HAS, and this structural character led to the normal starch to be utilized more quickly by gut bacteria with a faster increase in the IR ratio 1047/1022cm-1 (P<0.01) during fermentation. The measurement of metabolic activity indicates that the normal starch with a less organized structure was utilized faster and generated more acetate and lactate during fermentation; HAS with a highly organized structure was more likely to produce butyrate, corresponding the significant increase (P<0.001) in the populations of butyrate-producing strains (Faecalibacterium prausnitzii and Eubacterium hallii) in the cultures. This study reveals that fermentation kinetics of starch substrate is one of important characteristics for manipulating gut microbiota fermentation behaviours.
KW - Gut microbiota
KW - Molecular structure
KW - Short-chain fatty acid
KW - Starch
UR - http://www.scopus.com/inward/record.url?scp=84886408508&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886408508&partnerID=8YFLogxK
U2 - 10.1016/j.anaerobe.2013.09.012
DO - 10.1016/j.anaerobe.2013.09.012
M3 - Article
C2 - 24113693
AN - SCOPUS:84886408508
SN - 1075-9964
VL - 24
SP - 71
EP - 78
JO - Anaerobe
JF - Anaerobe
ER -