Abstract
Hydrological models play vital roles in understanding and management of surface water resources. The physically based distributed model Soil and Water Assessment Tool (SWAT) was applied to a small catchment in south eastern Australia to determine its ability to mimic low and high streamflows. The model was successfully calibrated using 1993-2002 streamflow data and validated using 2003-2011 data with a combination of manual and auto-calibration techniques for both monthly and daily time steps. Sensitivity analysis indicated that curve number for moisture condition II (CN2) is the most sensitive parameter for both time steps. In general, the model performance statistics indicated "very good" agreement between measured and simulated discharges for both calibration and validation periods. The model was able to satisfactorily simulate both low and high flows of the Yass River. Analysis of water balance components indicated that more than 90 % of the rainfall is lost as evapotranspiration and about 45 % of the streamflow is base flow. The calibrated and validated SWAT model can be used to analyze the effect of climate and land use changes on catchment wide hydrologic process.
Original language | English |
---|---|
Pages (from-to) | 5241-5254 |
Number of pages | 14 |
Journal | Environmental Earth Sciences |
Volume | 71 |
Issue number | 12 |
Early online date | 2013 |
DOIs | |
Publication status | Published - Jun 2014 |