TY - JOUR
T1 - Super pharmacological levels of calcitriol (1,25-(OH)2D3) inhibits mineral deposition and decreases cell proliferation in a strain dependent manner in chicken mesenchymal stem cells undergoing osteogenic differentiation in vitro
AU - Pande, Vivek
AU - Chousalkar, Kapil C.
AU - Bhanugopan, Marie
AU - Quinn, Jane
N1 - Includes bibliographical references.
PY - 2015/11
Y1 - 2015/11
N2 - The biologically active form of vitamin D3, calcitriol (1,25-(OH)2D3), plays a key role in mineral homeostasis and bone formation and dietary vitamin D3 deficiency is a major cause of bone disorders in poultry. Supplementary dietary cholecalciferol (25-hydroxyvitamin D, 25-OH), the precursor of calcitriol, is commonly employed to combat this problem; however, dosage must be carefully determined as excess dietary vitamin D can cause toxicity resulting in a decrease in bone calcification, hypercalcinemia and renal failure. Despite much research on the therapeutic administration of dietary vitamin D in humans, the relative sensitivity of avian species to exogenous vitamin D has not been well defined. In order to determine the effects of exogenous 1,25-(OH)2D3 during avian osteogenesis, chicken bone marrow-derived mesenchymal stem cells (BM-MSCs) were exposed to varying doses of 1,25-(OH)2D3 during in vitro osteogenic differentiation and examined for markers of early proliferation and osteogenic induction. Similar to humans and other mammals, poultry BM-MSCs were found to be highly sensitive to exogenous 1,25-(OH)2D3 with super pharmacological levels exerting significant inhibition of mineralization and loss of cell proliferation in vitro. Strain related differences were apparent, with BM-MCSs derived from layers strains showing a higher level of sensitivity to 1,25-(OH)2D3 than those from broilers. These data suggest that understanding species and strain specific sensitivities to 1,25-(OH)2D3 is important for optimizing bone health in the poultry industry and that use of avian BM-MSCs are a useful tool for examining underlying effects of genetic variation in poultry.
AB - The biologically active form of vitamin D3, calcitriol (1,25-(OH)2D3), plays a key role in mineral homeostasis and bone formation and dietary vitamin D3 deficiency is a major cause of bone disorders in poultry. Supplementary dietary cholecalciferol (25-hydroxyvitamin D, 25-OH), the precursor of calcitriol, is commonly employed to combat this problem; however, dosage must be carefully determined as excess dietary vitamin D can cause toxicity resulting in a decrease in bone calcification, hypercalcinemia and renal failure. Despite much research on the therapeutic administration of dietary vitamin D in humans, the relative sensitivity of avian species to exogenous vitamin D has not been well defined. In order to determine the effects of exogenous 1,25-(OH)2D3 during avian osteogenesis, chicken bone marrow-derived mesenchymal stem cells (BM-MSCs) were exposed to varying doses of 1,25-(OH)2D3 during in vitro osteogenic differentiation and examined for markers of early proliferation and osteogenic induction. Similar to humans and other mammals, poultry BM-MSCs were found to be highly sensitive to exogenous 1,25-(OH)2D3 with super pharmacological levels exerting significant inhibition of mineralization and loss of cell proliferation in vitro. Strain related differences were apparent, with BM-MCSs derived from layers strains showing a higher level of sensitivity to 1,25-(OH)2D3 than those from broilers. These data suggest that understanding species and strain specific sensitivities to 1,25-(OH)2D3 is important for optimizing bone health in the poultry industry and that use of avian BM-MSCs are a useful tool for examining underlying effects of genetic variation in poultry.
KW - Calcitriol
KW - Mesenchymal stem cell
KW - Osteogenic differentiation
KW - Poultry
KW - Vitamin D
U2 - 10.3382/ps/pev284
DO - 10.3382/ps/pev284
M3 - Article
C2 - 26500277
SN - 0032-5791
VL - 94
SP - 2784
EP - 2796
JO - Poultry Science
JF - Poultry Science
IS - 11
ER -