TY - JOUR
T1 - Swinging back from the brink?
T2 - Polygamous mating strategies revealed for an iconic threatened freshwater fish
AU - Furlan, Elise M
AU - Baumgartner, Lee J
AU - Duncan, Meaghan
AU - Ellis, Iain
AU - Gruber, Bernd
AU - Harrisson, Katherine
AU - Michie, Laura
AU - Thiem, Jason D
AU - Stuart, Ivor
N1 - Publisher Copyright:
© 2024
PY - 2024/2/7
Y1 - 2024/2/7
N2 - Catastrophic fish death events are increasing in frequency and severity globally. A series of major recent fish deaths in the semi-arid lower Darling-Baaka river system (LDBR) of Australia are emblematic of these issues with tens of millions of native fish perishing. In 2018-2019 there was a major death event for Australia's largest freshwater fish, Murray cod (Maccullochella peelii). To aid the recovery and guide restoration activities of local Murray cod populations, it is essential to gather information on the mating strategies and effective population size following the fish death event. After the fish deaths, we collected larvae during the 2020 and 2021 breeding seasons and used single nucleotide polymorphisms (SNPs) to provide insight mating strategies and to estimate effective population size. Larvae were detected in both years along the entire length of the LDBR. Sixteen percent of the inferred breeding individuals were found to contribute to multiple pairings, confirming a complex and polygamous mating system. A high frequency of polygamy was evident both within and between years with 100 % polygamy identified among parents that produced offspring in both 2020 and 2021 and 95 % polygamy identified among parents involved in multiple spawning events within years. Post-larval Murray cod samples collected between 2016 and 2021 were co-analysed to further inform kinship patterns. Again, monogamy was rare with no confirmed cases of the same male-female pair contributing to multiple breeding events within or between seasons. Effective population size based on Murray cod collected after the fish death event was estimated at 721.6 (CI 471-1486), though this has likely declined following a subsequent catastrophic fish death event in the LDBR in March 2023. Our data provide insight into the variability of Murray cod mating strategies, and we anticipate that this knowledge will assist in planning conservation actions to ultimately help recover a species in crisis.
AB - Catastrophic fish death events are increasing in frequency and severity globally. A series of major recent fish deaths in the semi-arid lower Darling-Baaka river system (LDBR) of Australia are emblematic of these issues with tens of millions of native fish perishing. In 2018-2019 there was a major death event for Australia's largest freshwater fish, Murray cod (Maccullochella peelii). To aid the recovery and guide restoration activities of local Murray cod populations, it is essential to gather information on the mating strategies and effective population size following the fish death event. After the fish deaths, we collected larvae during the 2020 and 2021 breeding seasons and used single nucleotide polymorphisms (SNPs) to provide insight mating strategies and to estimate effective population size. Larvae were detected in both years along the entire length of the LDBR. Sixteen percent of the inferred breeding individuals were found to contribute to multiple pairings, confirming a complex and polygamous mating system. A high frequency of polygamy was evident both within and between years with 100 % polygamy identified among parents that produced offspring in both 2020 and 2021 and 95 % polygamy identified among parents involved in multiple spawning events within years. Post-larval Murray cod samples collected between 2016 and 2021 were co-analysed to further inform kinship patterns. Again, monogamy was rare with no confirmed cases of the same male-female pair contributing to multiple breeding events within or between seasons. Effective population size based on Murray cod collected after the fish death event was estimated at 721.6 (CI 471-1486), though this has likely declined following a subsequent catastrophic fish death event in the LDBR in March 2023. Our data provide insight into the variability of Murray cod mating strategies, and we anticipate that this knowledge will assist in planning conservation actions to ultimately help recover a species in crisis.
U2 - 10.1016/j.scitotenv.2024.170808
DO - 10.1016/j.scitotenv.2024.170808
M3 - Article
C2 - 38336046
SN - 0048-9697
VL - 919
SP - 170808
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 170808
ER -