The interaction of unfolding a-lactalbumin and malate dehydrogenase with the molecular chaperone aB-crystallin: A light and X-ray scattering investigation

Regini JW, Ecroyd H, Meehan S, Bremmell K, Clarke MJ, Lammie D, Carver JA, Timothy Wess

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
5 Downloads (Pure)

Abstract

Purpose: The molecular chaperone aB-crystallin is found in high concentrations in the lens and is present in all major body tissues. Its structure and the mechanism by which it protects its target protein from aggregating and precipitating are not known. Methods: Dynamic light scattering and X-ray solution scattering techniques were used to investigate structural features of the aB-crystallin oligomer when complexed with target proteins under mild stress conditions, i.e., reduction of a- lactalbumin at 37 °C and malate dehydrogenase when heated at 42 °C. In this investigation, the size, shape and particle distribution of the complexes were determined in real-time following the induction of stress. Results: Overall, it is observed that the mass distribution, hydrodynamic radius, and spherical shape of the aB-crystallin oligomer do not alter significantly when it complexes with its target protein. Conclusions: The data are consistent with the target protein being located in the outer protein shell of the aB-crystallin oligomer where it is readily accessible for possible refolding via the action of other molecular chaperones.
Original languageEnglish
Pages (from-to)2446-2456
Number of pages11
JournalMolecular Vision
Volume16
Publication statusPublished - Nov 2010

Fingerprint

Dive into the research topics of 'The interaction of unfolding a-lactalbumin and malate dehydrogenase with the molecular chaperone aB-crystallin: A light and X-ray scattering investigation'. Together they form a unique fingerprint.

Cite this