Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration

T.M. Woodruff, J. W. Crane, L.M. Proctor, K.M. Buller, A.B. Shek, K. De Vos, S. Politt, H.M. Williams, I.A, Shiels

    Research output: Contribution to journalArticlepeer-review

    115 Citations (Scopus)

    Abstract

    The complement system is thought to be involved in the pathogenesis of numerous neurological diseases, although its precise role remains controversial. In this study we used orally active C5a receptor antagonists (PMX53 and PMX205) developed in our laboratories in a rat model of 3-nitropropionic acid (3-NP) -induced Huntington's disease. Administration of the C5a antagonists (10 mg/kg/day, oral) either 48 h pre- or 48 h post-toxin significantly reduced body weight loss, anorexia, and behavioral and motor deficits associated with 3-NP intoxication. Striatal lesion size, apoptosis, neutrophil infiltration, and hemorrhage were also significantly reduced in C5a antagonist-treated rats. Immunohistochemical analysis demonstrated marked deposition of C3 and C9, and up-regulation of C5a receptors on neuronal cells at the time of lesion formation. Inhibition of prostaglandins or TNF-alpha with ibuprofen or infliximab had no effect in this model. The C5a antagonists did not affect 3-NP-induced cell death when added directly to rat striatal neuronal cultures, indicating a secondary mechanism of action in vivo. Our findings demonstrate for the first time that complement activation in the brain, particularly C5a, is a key event in the pathogenesis of this disease model, and suggest a future role for inhibitors of C5a in the treatment of neurodegenerative diseases.
    Original languageEnglish
    Pages (from-to)1407-1417
    Number of pages11
    JournalFASEB Journal
    Volume20
    Issue number9
    DOIs
    Publication statusPublished - Jul 2006

    Fingerprint

    Dive into the research topics of 'Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration'. Together they form a unique fingerprint.

    Cite this