Ultrastructure, osmotic tolerance, glycerol toxicity and cryopreservation of caput and cauda epididymidal kangaroo spermatozoa

Rhett McClean, Catriona MacCallum, David Blyde, William Holt, Stephen Johnston

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

The aim of the present study was to compare cryopreservation, osmotic tolerance and glycerol toxicity between mature and immature epididymal kangaroo spermatozoa to investigate whether the lack of cryopreservation success of cauda epididymidal spermatozoa may be related to the increased complexity of the sperm ultrastructure acquired during epididymal transit. Caput and cauda epididymidal spermatozoa were recovered from red-necked wallabies (RNW; Macropus rufogriseus) and eastern grey kangaroos (EGK; M. giganteus). In Experiment 1, caput and cauda epididymidal spermatozoa were frozen and thawed using a standard cryopreservation procedure in Tris-citrate buffer with or without 20% glycerol. Although cryopreservation of caput epididymidal spermatozoa resulted in a significant increase in sperm plasma membrane damage, they were more tolerant of the procedure than spermatozoa recovered from the cauda epididymidis (P < 0.05). In Experiment 2, caput and cauda epididymidal EGK spermatozoa were diluted into phosphate-buffered saline media of varying osmolarity and their osmotic tolerance determined. Plasma membranes of caput epididymidal spermatozoa were more tolerant of hypo-osmotic media than were cauda epididymidal spermatozoa (P < 0.05). In Experiment 3, caput and cauda epididymidal RNW spermatozoa were incubated in Tris-citrate buffer with and without 20% glycerol at 35 and 4°C to examine the cytotoxic effects of glycerol. At both temperatures, caput epididymidal spermatozoa showed less plasma membrane damage compared with cauda epididymidal spermatozoa when exposed to 20% glycerol (P < 0.05). These experiments clearly indicate that epididymal maturation of kangaroo spermatozoa results in a decreased ability to withstand the physiological stresses associated with cryopreservation.
Original languageEnglish
Pages (from-to)469-476
Number of pages8
JournalReproduction, Fertility and Development
Volume18
Issue number4
DOIs
Publication statusPublished - 2006

Fingerprint

Dive into the research topics of 'Ultrastructure, osmotic tolerance, glycerol toxicity and cryopreservation of caput and cauda epididymidal kangaroo spermatozoa'. Together they form a unique fingerprint.

Cite this