Abstract
This work approaches the texture segmentation problem by incorporating genetic algorithm and k-mean clustering method within a multiresolution structure. First, a quad-tree structure is constructed and the input image is partition into blocks at different resolution levels. Texture features are then extracted from each block. Based on the texture features, a hybrid genetic algorithm is employed to perform the segmentation. The crossover operator of traditional genetic algorithm is replaced with k-means clustering method while the mutate and select operators are adopted. In the final step, the boundaries and the segmentation result of the current resolution level are propagated down to the next level to act as contextual constraints and the initial configuration of the next level, respectively.
Original language | English |
---|---|
Title of host publication | IEEE International Conference on Image Processing |
Pages | 1033-1036 |
Number of pages | 4 |
Volume | 2 |
Publication status | Published - 2003 |
Event | Proceedings: 2003 International Conference on Image Processing, ICIP-2003 - Barcelona, Spain Duration: 14 Sept 2003 → 17 Sept 2003 |
Conference
Conference | Proceedings: 2003 International Conference on Image Processing, ICIP-2003 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 14/09/03 → 17/09/03 |