TY - JOUR
T1 - Use of artificial bark covers to investigate the distribution and abundance of arboreal lizards in a floodplain environment
AU - Moore, Eva
AU - Nimmo, Dale
AU - Wassens, Skye
AU - Michael, Damian
N1 - Publisher Copyright:
© 2021 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
PY - 2022
Y1 - 2022
N2 - Arboreal lizards, especially species that inhabit flood-prone environments, have been poorly surveyed worldwide. We examined spatiotemporal patterns in arboreal lizard abundance and factors driving detection rates in floodplain environments using artificial bark covers, a non-destructive and cost-effective survey method. In total, 112 flexible, closed-cell foam bark covers were installed on eucalypt trees in 13 wetlands in the Murrumbidgee River floodplain of southern New South Wales, Australia, stratified by two inundation frequency treatments. Of four arboreal lizard species detected, the southern marbled gecko (Christinus marmoratus) (n = 41) and the tree dtella (Gehyra versicolor) (n = 8) were restricted to the mid-Murrumbidgee region, whereas the crevice skink (Egernia striolata) (n = 19) was restricted to the lower-Murrumbidgee region and did not co-occur with either gecko species. Mean detection rates of lizard species did not differ between frequently and infrequently inundated treatments but their abundance beneath covers varied significantly by month. For all detected lizard species, the presence/absence of the arachnid Holconia murrayensis represented a significant variable in explaining lizard occurrence patterns, particularly that of C. marmoratus. Artificial bark covers are a useful survey method for collecting distribution, abundance, and occupancy data on floodplain reptiles, although detection rates can be affected by the month, predator–prey interactions, and survey effort. Adopting passive, non-destructive reptile survey methods would greatly improve our knowledge of species’ distributions and abundance patterns in vegetation communities subject to disturbance events.
AB - Arboreal lizards, especially species that inhabit flood-prone environments, have been poorly surveyed worldwide. We examined spatiotemporal patterns in arboreal lizard abundance and factors driving detection rates in floodplain environments using artificial bark covers, a non-destructive and cost-effective survey method. In total, 112 flexible, closed-cell foam bark covers were installed on eucalypt trees in 13 wetlands in the Murrumbidgee River floodplain of southern New South Wales, Australia, stratified by two inundation frequency treatments. Of four arboreal lizard species detected, the southern marbled gecko (Christinus marmoratus) (n = 41) and the tree dtella (Gehyra versicolor) (n = 8) were restricted to the mid-Murrumbidgee region, whereas the crevice skink (Egernia striolata) (n = 19) was restricted to the lower-Murrumbidgee region and did not co-occur with either gecko species. Mean detection rates of lizard species did not differ between frequently and infrequently inundated treatments but their abundance beneath covers varied significantly by month. For all detected lizard species, the presence/absence of the arachnid Holconia murrayensis represented a significant variable in explaining lizard occurrence patterns, particularly that of C. marmoratus. Artificial bark covers are a useful survey method for collecting distribution, abundance, and occupancy data on floodplain reptiles, although detection rates can be affected by the month, predator–prey interactions, and survey effort. Adopting passive, non-destructive reptile survey methods would greatly improve our knowledge of species’ distributions and abundance patterns in vegetation communities subject to disturbance events.
KW - Arboreal lizards
KW - Artificial refuges
KW - Environmental water
KW - Floodplain environment
KW - Murray-Darling Basin
KW - Occupancy patterns
KW - Species distribution
KW - Survey methods
UR - http://www.scopus.com/inward/record.url?scp=85130541303&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130541303&partnerID=8YFLogxK
U2 - 10.1071/ZO21036
DO - 10.1071/ZO21036
M3 - Article
SN - 0004-959X
VL - 69
SP - 125
EP - 135
JO - Australian Journal of Zoology
JF - Australian Journal of Zoology
IS - 4
ER -