














protein from Streptococcus mutans UA159 (PDB code 3LBB;
sequence identity 67%), solved by the structural genomics con-
sortium, but remains uncharacterized and unpublished. This
enzyme was solved in apo (PDB code 3LBB) and CoA (PDB
code 3LBE) bound forms, and revealed similar conformational
changes noted in our structures, but with some major excep-

tions. In the apo structure, all N-terminal residues were posi-
tioned in the �-strand configuration, similar to those observed
in our apo- and mutant enzymes, however, in the PDB 3LBE
deposition, the CoA-bound structure contained CoA bound at
all the sites, and all hotdog domains were induced into an active
�-helix conformation.

FIGURE 6. Structural alignment of SpPaaI. A, primary and secondary structure alignment of SpPaaI using the ENDscript/ESPript web server: helices are
represented by �, strands by �, and turns with T. The predicated active site amino acid residues are indicated by green triangles and blue boxes. Two highly
conserved Gly residues that precede the central helix are highlighted in red. B, active site residues of SpPaaI are contributed from residues on both chains of the
dimer: Asn37 of chain A and Asp52 and Thr68 of chain B in dimer AB are shown.

FIGURE 7. Quaternary structure of SpPaaI in the presence of CoA. The CoA ligand was bound within chains A and B, as supported by an Fo � Fc annealed omit
map contoured at 3� (green mesh, left panels), but not in chains C and D (green mesh, right panels).
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It is therefore likely that these enzymes may exist in different
CoA-bound states, which correlate directly with the number
of domains that have induced N-terminal conformational

changes and exposed substrate binding sites. In this study, we
have characterized structural conformations where none of the
thioesterase domains are bound by CoA, and correspondingly,
these thioesterase domains display N-terminal conformations
that solely exist in a �-strand configuration (PDB codes 4ZRF,
4XY5, and 4XY6). We have also determined a structure where
half the thioesterase domains are bound by CoA, and therefore
only half the thioesterase domains are induced in the �-strand
configuration, whereas the other half are in the �-helix confor-
mation (PDB code 4ZRB). We have also identified through ho-
mologous structural alignment, a closely related structure
where the thioesterase domains are all bound to CoA, and con-
comitantly, all domains exist in the �-helix configuration (PDB
code 3LBE). Interestingly, other thioesterases have been shown
to display induced conformational changes, but through differ-
ent mechanisms. For example, the conformational changes
observed in the PaaI structures of T. thermophilus shows CoA
exhibits a half-of-sites reactivity through small, rigid body
changes in the rearrangement of hotdog subunits. Moreover, it
was shown in this system that CoA was bound at two of the four
hotdog domains within the biological unit of the crystal struc-
ture. Similarly, half-of-sites reactivity has also been noted in
other families of thioesterases including those exhibiting a
hexameric quaternary structure, but also through different

FIGURE 8. Conformational changes within the N-terminal and loop regions harboring Tyr38-Tyr39 between the two double hotdog protomers observed in
the quaternary structure of SpPaaI bound to CoA. In the left panel, the N-terminal residues form an �-helix (magenta, schematic), and are kinked at 135° compared
with the conformation of these residues in the other double hotdog protomer, where these residues bind through a �-strand that traverse across hotdog domains
within the protomer (right panels). In the left panel, these conformational changes result in the loop containing Tyr38-Tyr39 to be positioned in a manner that results in
an opened substrate binding site, whereas in the right panel, this loop and positioning of the these residues occlude the substrate site.

TABLE 6
Interactions of N-terminal residues 1–11 present in the CoA (top,
chains A: B) and unliganded (bottom, chains C:D) chains of SpPaaI
structure

H-bonds Chain Distance Chain

Å
CoA bound

1 A: Phe4 (O) 3.61 B: Tyr15 (OH)
2 A: Phe4 (O) 3.41 B: Ile17 (CD1)
3 A: Phe4 (CE2) 3.41 B: Leu57 (CD2)
4 A: His5 (CA) 3.54 B: Tyr15 (OH)
5 A: His5 (ND1) 3.73 B: Tyr15 (OH)
6 A: Phe6 (CE2) 3.57 B: Tyr15 (CE1)
7 A: Phe6 (CZ) 3.65 B: Phe12 (CD1)
8 A: Ala8 (CB) 3.52 B: Ala11 (O)
9 A: Ala8 (CB) 3.59 B: Phe12 (O)
10 A: Ile9 (CD1) 3.69 A: His43 (NE2)
11 A: Ser10 (CB) 3.79 A: Ser34 (OG)
12 A: Ala11 (CB) 3.63 A: Thr49 (CG2)

Unbound enzyme
1 C: Asp3 (OD1) 3.11 D: Tyr39 (OH)
2 C: Asp3 (CB) 3.40 D: Tyr38 (CD2)
3 C: Phe4 (CE1) 3.76 D: Gln53 (NE2)
4 C: Phe4 (CZ) 3.65 D: Leu57 (CD1)
5 C: Phe6 (CE2) 3.77 D: Asp7 (OD1)
6 C: Asp7 (OD2) 3.58 D: Tyr38 (N)
7 C: Asp7 (OD2) 3.40 D: Asn37 (CB)
8 C: Ala11 (CB) 3.51 D: Thr49 (CG2)
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mechanisms (4, 9). Thus, it appears that half-of-sites is con-
served in this family of thioesterases, and it is possible that the
structure determined in our study represents a transition state
along the pathway in becoming fully loaded with CoA. The
precise biological role for the half-of-sites reactivity in thioes-
terase domains remains to be elucidated, however, that it
appears to be present in different thioesterase families includ-
ing prokaryotes and eukaryotes, and that different mechanisms
have evolved to maintain these features within thioesterases, is
indicative they are important for function. That the active site
of nearly all thioesterase members is achieved through a double
hotdog association, and yet most thioesterases are reported to
exhibit tetrameric and hexameric quaternary structures, may in
part be related to this half-of-sites reactivity and a potential
mechanism of regulation, although this needs to be confirmed
experimentally.

Conclusion

SpPaaI is a tetrameric hot-dog thioesterase, with domains
arranged in a back to back configuration. This tetrameric con-
figuration has been confirmed in solution for the first time
using SAXS, and activity has been determined for both pheny-
lacetyl-CoA and medium-chain acyl-CoA substrates. Residues
Asn37, Asp52, and Thr68 were shown to be crucial for activity,
and the structural integrity of these mutants were confirmed by
crystallography. CoA occupies only half of the potentially active
binding sites, and is associated with a large conformational
change in the N terminus of the protein of up to 38 Å. This is
associated with conformational changes in a loop region con-
taining Tyr38-Tyr39 that modulates the accessibility of the sub-
strate binding site. The functional role of half-of-sites reactivity
remains to be elucidated, however, is conserved among mem-
bers of the thioesterase family.

Author Contributions—Y. K. participated in the research. All
authors participated in writing and editing the final manuscript.
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Siponen, M. I., Berglund, H., Lehtiö, L., and Forwood, J. K. (2014) Struc-
tural basis for regulation of the human acetyl-CoA thioesterase 12 and
interactions with the steroidogenic acute regulatory protein-related lipid
transfer (START) domain. J. Biol. Chem. 289, 24263–24274
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