A simple colorimetric method to measure copper in white wines

Nikolaos Kontoudakis

Crush 2018, Adelaide
Session 2: Grape and wine composition and provenance
Sources of copper in wine

Endogenous (natural origin)

Exogenous (human activities)

Pohl, 2007
Cu in Chardonnay grape juice and wine

- Control
- Addition 3 mg/l Cu
- Addition 6 mg/l Cu

- Grape juice
- Wine after fermentation
- Wine after cold stabilization
- Wine after bentonite treatment

X. Zhang PhD data
Importance of copper in wine quality

✓ Mechanism of glyoxylic acid-mediated polymerization of flavanols.

Fulcrand et al., 1997; Clark et al., 2003; Guo et al. 2017
Importance of copper in wine quality

✓ Cu haze in reduced conditions.
Importance of copper in wine quality

\[
\text{Cu}^{2+}_{(aq)} + \text{H}_2\text{S}_{(aq)} \leftrightarrow \text{Sulfide-bound Cu}
\]

\text{Labile Cu} \quad \text{Non labile Cu}

In model wine \(\text{Cu}_2\text{S}_2(s)\)

\(\checkmark\) \text{Cu can remove and/or induce sulfidic off-odours}

Kontoudakis et al., 2019.
The importance of copper in wine quality is highlighted. Copper can remove and/or induce sulfidic off-odours. The reaction shown is:

$$\text{Cu}^{+2(aq)} + \text{H}_2\text{S}_{(aq)} \leftrightarrow \leftrightarrow \text{Sulfide-bound Cu}$$

In model wine:

$$\text{Cu}_2\text{S}_{(s)}$$

The diagram illustrates the relationship between free H$_2$S (µg/L) and labile Cu (mg/L) in white and red wines. The data from Kontoudakis et al., 2019, shows that an increase in free H$_2$S is accompanied by an increase in labile Cu.

✓ Cu can remove and/or induce sulfidic off-odours.
Importance of copper in wine quality

Filterability of Cu_2S

White Wine (2:1, H2S:Cu)

- Copper can remove and/or induce sulfidic off-odours

Kontoudakis et al., 2018.
Importance of copper in wine quality

✓ Metallic taste in high levels

✓ Legal limits and toxicity
Total copper concentrations easily measured (researchers and big wineries)

Auto analyzer

ICP-OES/MS

GFAAS
Total copper concentrations measured by wineries

Colorimetric methods

Spectrophotometric method

Auto analyzer
Spectrophotometric method

Bicinchoninic acid (BCA)
potassium salt

BCA-copper complex
Spectrophotometric method

Procedure

- Blank
- Wine sample
- Wine sample + 0.1 mg/l Cu
- Wine sample + 0.3 mg/l Cu
- Wine sample + 0.5 mg/l Cu
- 10 ml wine sample
- 0.5 ml BCA solution-0.05% (w/v)-except blank
- 0.05 ml ascorbic acid-80 g/L
- 0.1 ml silver(I) nitrate-1 g/L silver(I)
- Copper and H₂O in adequate quantities

Samples were:
- Incubated at room temperature-30 min.
- Filtered (0.20 μm regenerated cellulose filters-RC)
- Measured at 563 nm with 40 mm glass cuvette
Total Cu concentration by ICP

Wines

Wine ICP
Wine ICP-silver

Cu (mg/l)

Wines

1 2 3 4 5 6 7 8 9 10 11 12
Total Cu concentration by ICP and spectrophotometric method

Cu (mg/l)

Wine ICP-silver
Wine Spectr.-silver
Wine Spectr.-silver + pH 4
Wine Spectr.
Wine Spectr.-pH 4

Wines 1 to 12
Total Cu concentration by ICP and spectrophotometric method

\[y = 0.9247x + 0.0215 \]
\[R^2 = 0.9336 \]

\[y = 0.9584x + 0.011 \]
\[R^2 = 0.977 \]
Spectrophotometric method validation parameters

- Recovery: 104 ± 9 %.
- Repeatability: average relative standard deviation (RSD) 3 ± 2 %.
- Specificity. The BCA reagent is specific for Cu in wine, with no influence from Mg, Mn, Fe, Zn and Al.
- Linearity. Linear within 0.04 to 1.0 mg/L copper.
- Stability. Samples should be filtered 30 minutes after addition BCA to wines, and then measured immediately afterwards.
- Matrix effects. Eliminated with silver(I) additions and with standard additions.
Colorimetric method-Konelab

✓ Thermo Scientific™ Konelab™ 20 Clinical Chemistry Analyser system
✓ Thermo Scientific copper test kit colorimetric reagent 4-(3,5-dibromo-2-pyridylazo)-N-ethyl-N-sulfopropylanaline-monosodium salt (diBr-PAESA)

Colorimetric reagent 4-(3,5-dibromo-2-pyridylazo)-N-ethyl-N-sulfopropylanaline-monosodium salt (diBr-PAESA)
Total Cu concentration by ICP and Konelab method

- Wine ICP-silver
- Wine Konelab
- Wine Konelab-silver

Wines 1 to 12 are plotted with the Cu concentration (mg/l) for each method.
Total Cu concentration by ICP vs Konelab method

$y = 0.915x + 0.0146$
$R^2 = 0.9829$

$y = 0.9341x - 0.0087$
$R^2 = 0.9935$

Cu by ICP (mg/l) vs Cu by Konelab (mg/l)

- Wine
- Wine with silver
Determination of labile copper

Procedure

✓ Same procedure like for total Cu
✓ 0.1 ml silver(I) nitrate - 1 g/L silver(I)
✓ Filtered and measured directly

2 procedures:
✓ Measure labile Cu in 7 white wines + the same wine with addition of 0.08 gr/l Cu
✓ 3 white wines during time (166h) - wines were oxidized
Reference method Stripping Potentiometry

Medium exchange stripping potentiometry with a thin mercury film on a screen printed carbon electrode

Clark et al., 2016.
Labile Cu in 7 white wines + the same wine with addition of 0.08 gr/l Cu
3 white wines during time (166h)-wines were oxidized

Possible reasons for disagreement of 2 methods:

- High titratable acidity and high concentration of organic acids
Conclusions

Total Cu can be measured easily in wineries with the use of colorimetric method(s).

Labile Cu potentially can be measured by colorimetric method.
Geoffrey Scollary
& Andrew Clark

Wine Australia

Mark Smith,
Paul Smith,
& Eric Wilkes
Thanks for your attention