Grapegrowers can be informed to upcoming heatwaves thanks to the Heatwave Service for Australia provided by the Bureau Of Meteorology. They also have tools to prepare for heatwaves with a number of mitigation options available. These include hydrocooling, canopy management, sunscreen or even shade cloth to reduce direct burn exposure to sunlight during the summer months. However, with more open spring canopies, or early leaf removal used in some vineyards, young berries may be at risk with the increasing severity and frequency of extreme heat events early in the season. It is thus essential to understand the sole effect of high temperature on berry development, and compounds such as tannins whose biosynthesis starts around flowering [1]. In addition, heatwaves occurring during berry ripening have worsened with berries exposed to air temperature up to 45 °C, and reaching well above 50 °C if unprotected due to canopy damage. The objective of this project was to study the mechanistic effect of high temperature on tannin accumulation and maturation. It aimed to provide growers and winemakers with an understanding of berry survival thresholds, to characterise the effect on the concentration and extractability of phenolics in heat-damaged berries by harvest, and to inform more cost-effective mitigation practices.

Materials & Methods
Three experiments were conducted inside a UV-transparent glasshouse during the 2016-17 and 2018-19 seasons. Using fans blowing hot air onto individual bunches without affecting light exposure [2], the effect of temperature on a range of berry growth and composition parameters was tested on well-irrigated potted Shiraz vines:
- EXP 1: high day temperature 20 days after flowering (E-L 31)
- EXP 2: day temperature intensity (Low: LT, High: HT, Very High: VHT) and duration (3 to 39 h) 15 days after the onset of véraison (E-L 36, +10 °Brix)
- EXP 3: high temperature at two phenological stages (E-L 31 and E-L 34/35)

In all experiments, berry samples were peeled and ground and seeds were extracted in 70% acidified acetone and analysed by LC-MS/MS to determine detailed tannin composition (after phloroglucinolysis) [3].

Results & Discussions
Under normal conditions, berry growth exhibited a typical double sigmoid growth pattern. Berries exposed to mild heat stress showed the same pattern but were slightly smaller with differences fading by harvest. If exposed to extreme stress, even though vines were well irrigated, damage appeared quickly with first browning, necrosis, shrivelling and desiccation with a threshold that differed depending on the phenological stage (Fig. 1). In general, total tannins, expressed on a dry weight (DW) basis, exhibited maximum concentration in skin and seeds at the end of fruit set and slowly decreased until maturity (Fig.2). Upon heating, only small changes were found in total tannin concentration whereas tannin content and profile were impacted, likely due to berry development disruption (development delayed with less skin surface and smaller and greener seeds). Potential denaturation of some genes involved in tannin biosynthesis could have occurred but the hypothesis has to be confirmed as most genes involved in galloylation and polymerisation are still unknown.

When content was affected by high temperature, changes in composition were also generally observed. In the skin, during EXP 1, the percentage of galloylation (proportion of epicatechin gallate subunits) was slightly increased around +40 °C. Contrasted results were observed after véraison with a decrease in galloylation (EXP 2). When significantly impacted, size (mDP) of seed tannins was higher in all cases (data not shown).

Conclusion
Tannins for well-irrigated Shiraz were only affected for a short period of time following three days of high temperatures unless berries were visually damaged and completely desiccated.

Acknowledgements: This work was supported by the National Wine and Grape Industry and funded by Charles Sturt University. Travel was funded by National Wine and Grape Industry Centre. The authors acknowledge David Foster, Khi Nguyen, Jack Zychalski, Nikola Kontoudaki, Michael Loughrin, Vincent West & Luca Filarmo for technical assistance.

References
[1] Gouot et al. (2019); Journal of Experimental Botany, 70, 397-423