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Chapter 8  

Soil Constraints: A Role for Strategic Deep Tillage 

Stephen Davies, Roger Armstrong, Lynne Macdonald, Jason Condon and Elizabeth Petersen 

 

Introduction 

Despite grains productivity improvements arising from CA, the gap between yields in growers’ 

paddocks and the physiologically determined water limited yield potential throughout many cropping 

regions remains large (Hochman et al. 2016). Although a variety of factors are responsible for this, 

many areas of the Australian grain belt with the largest proportional yield gaps contain a range of 

physicochemical soil constraints (Adcock et al. 2007, Dang et al. 2010, MacEwan et al. 2010, Page et 

al. 2018, Van Gool 2016, see Table 1). These constraints can result in significant reductions in grain 

yield potential by restricting root growth and access to soil water and nutrient supplies or directly inhibit 

growth via toxicities. Often a variety of constraints occur simultaneously and can be present in either 

the top or subsoils (or both) and are associated with both fine and coarser textured soils. In this chapter 

we have defined ‘subsoil’ as the part of the profile below normal depth of sowing or routine cultivation 

for weed control (ca. 0.1 m). Whilst some subsoil constraints reflect the inherent nature of the soil, those 

occurring in the top 0.5 m of the profile, such as acidity or compaction from machinery, result from 

agricultural management practices. 

A range of strategies have been proposed to manage these soil constraints including: 

 ‘genetic solutions’ involving increased tolerance to soil toxicities; 

 agronomic management to maximise profitability rather than productivity;  

 ‘amelioration‘, almost inevitably involving some form of physical intervention and/or 

application of an amendment (Sumner et al. 1986, Adcock et al. 2007, Gill et al. 2008, 2012, 

Davies et al. 2015a, b).  

‘Biological drilling’ (‘primer plants’) involving use of plant roots to modify subsoils has been assessed 

(Yunusa and Newton 2003, McCallum et al. 2004, Nuttall et al. 2008), but in recent years there has 

been increased attention on strategic deep tillage, which is one-off or occasional tillage typically to 

depths of 0.3 m or more. Strategic deep tillage includes deep ripping (Hamza and Anderson 2005), deep 

soil mixing (Scanlan and Davies 2019), soil inversion (Davies et al. 2013), deep placement, or clay 

spreading and delving with deep incorporation (Cann 2000, Rebbeck et al. 2007, Hall et al. 2010). The 

size and reliability of yield responses associated with strategic deep tillage differ across soil types and 

regions, but they can have significant and sustained profitability benefits (Davies et al. 2015b, Sale and 

Malcolm 2015, Davies et al. 2018). 

If the constraint is chemical, such as sodicity, acidity or a nutrient deficiency, some form of amendment 

is required, either inorganic (e.g. gypsum or lime) or organic (e.g. manures, compost). Such 

amendments have typically been applied to the topsoil (e.g. Armstrong et al. 2007, Li et al. 2019) but 

direct placement into subsoil is gaining interest (Davies et al. 2008, Condon et al. 2018, Sale et al. 

2019), although the mechanisms of yield improvements appear to vary with soil type and seasonal 

conditions and are contested (Celestina et al. 2018, Gill et al. 2019). Many subsoil amelioration 

practices have a high cost to implement and so are strategic in application and need to have a long 

residual benefit to make economic sense.  

Soil constraints 

In Australian dryland cropping systems, soil constraints typically align with broad soil types (Table 1). 

Low water holding capacity, topsoil water repellence, compaction, soil acidity and associated 

aluminium and manganese toxicity, and poor fertility are common on deep sands, sandy earths and 

sandy A-horizons of duplex (texture contrast) soils. High alkalinity, sodicity and chemical toxicities 

such as boron, chloride, bicarbonate and salt are common on finer textured loamy earth and clay subsoils 

and in the clay B-horizon of duplex profiles (Table 1). 
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Table 1. Association of common constraints of agricultural soils and the Australian Soil Classification soil orders 

(Isbell and National Committee on Soil and Terrain 2016). Dominant soil texture is shown include sand (S), 

texture contrast (TC), loam (L) and clay (C) 
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Water repellence x x x x x  x    

Low water holding capacity x x  x  x     

Subsoil compaction x x x x x  x x   

Poorly structured dense 

subsoil 
x x x x x x x  x x 

Poor subsoil fertility x x x x x x     

Acidity  

(Al and Mn toxicity)  
x x x   x x   x 

Alkalinity    x x    x  

Sodicity     x x  x   

Temporary water logging     x x x x   

Boron toxicity    x x   x   

Other toxicities (e.g. 

Chloride) 
   x x   x x  

x = commonly occurring;  = variable occurrence  

Soil water repellence occurs when hydrophobic organic compounds and waxes of plant and fungal 

origin coat topsoil sand particles resulting in slow and uneven water infiltration (Chan 1992, Franco et 

al. 1995, 2000, Doerr et al. 2000, Unkovich 2014). It is most common on sandy-topsoils with low clay 

content (<5 %) and has been recognised as a major constraint since land clearing in the late 1940s (Bond 

1964, Roberts and Carbon 1971). Water repellence results in uneven and slow soil wetting causing: 

 poor and delayed crop establishment;  

 staggered weed germination;  

 susceptibility to wind and water erosion;  

 high leaching risk due to preferential flow; and 

 inefficient use of rainfall (King 1981, Blackwell 2000, Roper et al. 2015).  

Concentration of organic matter at the soil surface through reduced tillage (Chan 1992), a shift towards 

earlier and dry seeding (Fletcher et al. 2016), and smaller, less reliable break-of-season rainfall events, 

have likely contributed to increased expression of soil water repellence (Roper et al. 2015). 

Subsoil compaction, plough pans and inherent hard layers as a result of cementation (Needham et al. 

2004a) have long been recognised as significant soil constraints (Hamblin and Tennant 1979, 

Henderson et al. 1988). Growth in the scale of cropping enterprises has led to the use of larger, heavier 

machinery with resultant higher axle loads causing deeper, more severe, compaction (Henderson et al. 

1988, Hagan et al. 2015, Isbister et al. 2016). Current agricultural machinery such as harvesters, air 

carts, tractors, sprayers and chaser bins have axle loads exceeding 10 tonnes, resulting in deeper 

compaction to 0.4 m or more (Isbister et al. 2016). Degree of compactibility for soils with less than 

20% clay is related to the particle size distribution (Needham et al. 2004b). Soils with more even (well-

graded) distribution of soil particles can be more susceptible to compaction than poorly-graded sand, 

though these may still have high bulk density (Needham et al. 2004b).  
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Agricultural practices have acidified soils. Soil acidity is a common soil constraint in cropping zones 

of south eastern and Western Australia (WA) and occurs in both coarse and fine textured soils. The 

acidification rate has increased as cropping has intensified, with higher inputs of N fertilisers and 

increased product export (Mason et al. 1994, Dolling and Porter 1994, Dolling et al. 1994). Where lime 

applications have been inadequate, there has been extensive development of subsurface acidity 

(Williams 1980, Tang et al. 2000, Tang 2004, Gazey et al. 2013) and associated aluminium and 

manganese toxicity. Whilst lime application can ameliorate acidity within the 0-10 cm layer, the slow 

dissolution and movement of lime limits the effectiveness of surface-applied lime to address deeper, 

subsoil acidity (and see Chapter 7).  

Grain production in the low and medium rainfall regions of Australia is mostly conducted on neutral to 

alkaline soils (Adcock et al. 2007, Dang et al. 2010, van Gool et al. 2018). Clay content typically 

increases with depth (to more than 60%), often concurrent with an increase in the severity of a range of 

physicochemical subsoil constraints. These limit crop productivity via impeding subsoil root growth 

and function, leading to poor utilisation of subsoil water and nutrients (Nuttall et al. 2003). Lack of 

available water is the principal yield constraint in these environments and subsoil constraints tend to 

restrict grain yields in seasons with ‘dry finishes’ (Nuttall and Armstrong 2010) when the crop is more 

reliant on subsoil water reserves to complete grain fill. Most subsoils contain multiple constraints, the 

most common being sodicity and salinity, but many also have toxic concentrations of boron (B), 

chloride (Cl-), bicarbonate (HCO3
-) and potentially aluminium (Al) arising from high pH, as well as 

reduced nutrient availability (Adcock et al. 2007, Dang et al. 2010, Brautigan et al. 2012). Poor subsoil 

structure and high soil strength resulting from both sodicity (Shaw et al. 1994) and compaction 

(McGarry 1993, Hamza and Anderson 2005) is common. Poor subsoil structure often leads to restricted 

drainage, temporary water logging and restricted aeration (Rengasamy et al. 2003). Many texture 

contrast soils can also have alkaline clay-rich B-horizons that are sodic, poorly structured and may also 

be saline (Hall et al. 2009), restricting crop root growth and nutrient availability (Tennant et al. 1992, 

Belford et al. 1992). 

Strategic deep tillage tools and approaches 

Deep ripping, also known as subsoiling, involves the loosening of soils for the purpose of removing 

hardpans, either natural or induced, and loosening dense subsoils to improve soil structure, porosity and 

water infiltration (Spoor 2006). Deep ripping is undertaken using deep working tynes which may be 

rigid or have high-breakout pressure. Typically, deep rippers do not intentionally incorporate much 

topsoil into the subsoil (Scanlan and Davies 2019). The type and geometry of the deep ripper can 

influence soil mixing as rippers with parabolic, wider or angled chisel-point tynes can delve and mix 

the soil more than narrow-tyned rippers (Spoor 2006). Addition of wings or wider points can also result 

in more breakout and soil disturbance, depending on working depth and soil conditions, especially 

moisture content (Spoor 2006). Narrow-tyned rippers can incorporate around 5-10% of the topsoil into 

soil layers below 0.1 m, but this would typically only be to a maximum depth of 0.15 m (Scanlan and 

Davies 2019; Table 2). This ‘mixing’ is passive with topsoil falling into temporary voids around and 

behind the ripping tynes as they pass through the soil. 

In Australia, deep ripping has been practised for more than 40-years (Jarvis 1983, 1986a, Ellington 

1986) and has long included the possibility of incorporating or deep placing soil amendments, such as 

lime, nutrients and organic matter (Robertson et al. 1957, Parr 1959). In continuous or intensive grain 

cropping systems of WA, deep sandy-textured soils have been the most responsive to deep ripping 

(Jarvis 1986b) and consequently the most commonly ripped soils. Ripping depths have traditionally 

been 0.3-0.4 m (Jarvis 1986b) but in recent years ripping depths on deep sands and sandy earths have 

increased to 0.7-0.8 m (Blackwell et al. 2016). The move to even deeper ripping has been driven by:  

 recognition of deeper and more severe compaction layers arising from larger and heavier 

machinery (Isbister et al. 2016) coupled with increased cropping intensity;  

 increased availability of high horsepower tractors and deeper working rippers; and  

 larger yield and potential profit benefits when used on responsive soil types.  
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Table 2. Summary of strategic deep tillage approaches, working depth, incorporation characteristics, soil 

constraints addressed and approximate cost 

Strategic 

deep 

tillage 

method 

Implement 

working  

depth (m) 

Implement impact on incorporation of soil 

amendment and/or topsoil 

% 

topsoil 

buried 

below 

0.1 m* 

Constraints 

addressed 

Approximate  

cost  

($/ha) 

Deep ripping 0.3-0.7 
Minimal incorporation, depending on ripper type. 

Backfill to 0.15 m. 
5-10 

Compaction 

Hardpans 
$45-100 

Deep ripping 

with topsoil 

slotting 

 0.3-0.7 

Topsoil slots from surface typically to depths of 

0.35-0.40 m, but ripping depths can extend to 0.70 

m. Can partially incorporate surface spread 

amendments (e.g. lime, nutrients, organic matter). 

10-15 

Compaction 

Hardpans 

Subsoil 

acidity 

Subsoil 

sodicity 

$55-120 

Deep subsoil 

placement, 

using ripper  

0.3-0.7 

Direct deep placement of amendments (e.g. organic 

matter, lime, gypsum, nutrients) in bands at depths 

up to 0.70 m. 

5-15 

Compaction 

Hardpans 

Subsoil 

acidity 

Subsoil 

fertility 

$300-1400 

Subsoil clay 

Delving +  

incorporation 

0.6-1.2 

Backfill likely due to wide tynes and high 

disturbance, subsequent clay incorporation will mix 

soils to 0.15-0.45 m. Soil amendments can be 

mixed into soil profile by incorporation process. 

n.m. 

Water 

repellence 

Compaction 

Fertility of 

A-horizon 

$300-450 

Soil mixing  

– large offset 

 discs 

0.2-0.3 

Offsets throw soil one way then back again, mixing 

of topsoil and surface spread amendments, (e.g. 

lime, subsoil clay, organic matter) typically occurs 

between 0.15-0.25 m.  

n.m. 

Subsoil 

acidity 

Water 

repellence 

Compaction 

$50-70 

Soil mixing 

- one pass  

tillage 

0.3-0.35 

Mixing of topsoil and surface spread amendments 

to 0.15 m and some deeper inclusion to 0.30 m 

possible depending on tyne design. 

n.m. 

Subsoil 

acidity 

Compaction 

$70-100 

Soil mixing –  

rotary spader 
0.35-0.4 

Mixes to maximum working depth of 0.35-40 m. 

Can incorporate a range of surface spread 

amendments (e.g. lime, gypsum, organic matter, 

subsoil clay, nutrients etc.) 

50-60 

Subsoil 

acidity 

Compaction 

Water 

repellence 

Fertility of 

A-horizon 

$120-150 

Soil inversion  

- mouldboard 

plough 

0.35-0.45 

Buries a layer typically between 0.15-0.40 m. Can 

bury surface applied amendments (e.g. lime, 

organic matter, nutrients etc.) at depth. For subsoil 

acidity low pH subsoil brought to the surface after 

ploughing will need to be limed. 

80-90 

Water 

repellence 

Compaction 

Subsoil 

fertility 

Weeds 

$100-150 

Soil inversion 

– modified 

one way disc 

plough 

0.3-0.4 

Buries topsoil or surface applied amendments, such 

as lime or organic matter, in an arc from surface 

down to a depth of 0.25-0.35 m. 

60 

Water 

repellence 

Compaction 

Subsoil 

fertility 

Weeds 

$40-60 

* The proportion of topsoil buried below 0.1 m based on Scanlan and Davies 2019, Ucgul et al. 2017, 2018, 2019. 

n.m. = not measured. 

 

Costs of ‘deeper’ ripping are considerably higher with greater fuel use as a result of increased draft 

force, reduced work rate with narrower rippers and slower operating speeds and greater wear and fatigue 

of engines and machinery components working under high load (Blackwell et al. 2016, Isbister et al. 

2016). Blackwell et al. (2016) found that fuel use at least doubled when ripping to 0.55 m on sand 

compared with ripping to 0.3 m. Shallow leading tynes can reduce the deeper ripping draft force and 

fuel use compared with conventional ripping and provide more effective removal of deep compaction 
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(Hamza et al. 2013). Depending on the tyne arrangement, shallow-leading tynes were shown to reduce 

draft by up to 11-25% on deep loamy sand and by up to 18% on a clay soil (Hamza et al. 2013).  

Other developments in deep ripping include topsoil slotting (Blackwell et al. 2016, Davies et al. 2015a, 

Parker et al. 2017) and direct deep placement of amendment (Gill et al. 2008, Davies et al. 2008, Sale 

et al. 2019). Topsoil slotting is achieved through placement of an opener behind the ripping tyne which 

operates just below the topsoil, holding the subsoil open to allow loosened topsoil and surface applied 

amendment to fall into slots (Davies et al. 2015a, Blackwell et al. 2016, see Figure 1). Deeper inclusion 

of surface organic matter to depths up to 0.35-0.40 m may help maintain the ripping slot in softer 

condition for a longer time (Blackwell et al. 2016).  

Direct placement of organic or other soil amendments directly into the subsoil typically involves 

placement of pipes directly behind deep ripper tynes (Gill et al. 2008, Davies et al. 2008). Large 

diameter pipes are used for deep placement of dry, sometimes pelletised, amendments which flow via 

gravity or are blown into the subsoil (Gill et al. 2008, Davies et al. 2008). Liquid amendments can be 

pumped through smaller diameter tubes, although the volume of amendment that can be applied is 

restricted (Anderson and Hendrick 1983).  

Clay delving, like deep ripping, uses deep working tynes to interact with the subsoil. In this instance 

tynes are fixed, often angled at ~45°, broad-faced and typically work at depths of at least 0.6 m or more, 

typically with only 2-3 tynes spaced about 1 m apart (Desbiolles et al. 1997, Bailey and Hughes 2012, 

Betti et al. 2015). Delving tynes penetrate the clay B-horizon of texture contrast, or duplex, soils and 

lift clay-rich subsoil into the sandy A-horizon (Bailey and Hughes 2012) while at the same time 

physically breaking up compacted and cemented layers (Figure 1). Following delving, soils are typically 

worked with offset discs or a rotary spader (described below) to mix further and incorporate the clay 

(Bailey and Hughes 2012). Increasing the clay content of sandy topsoils can reduce soil water repellence 

and improve soil wettability (Betti et al. 2015, 2016), while also improving fertility (Hall et al. 2010), 

soil carbon  storage (Schapel et al. 2017, 2018) and crop yield (Bailey et al. 2010, Hall et al. 2010, Betti 

et al. 2017). 

Deep soil mixing involves occasional cultivation of soils to depths of 0.2 m or more (Scanlan and Davies 

2019), as opposed to traditional ploughing or cultivation practices that are shallower and were 

traditionally practised regularly, rather than as a strategic or one-off practice. Deep soil mixing can be 

beneficial by reducing topsoil water repellence and partial weed seed burial (Davies et al. 2013). Deep 

mixing can also be effective to incorporate stubbles and place surface organic matter and associated 

nutrients deeper into the soil profile. In Australia, deep mixing is typically undertaken using large, deep 

working, offset disc ploughs, one-pass tillage system implements or, more recently, rotary spaders 

(Davies et al. 2010, 2013, 2015a, see Table 2).  

One-pass tillage implements combine a series of tillage tools on the one implement, typically a leading 

set of shallow working offset discs followed by ripping tynes and then levelling discs or harrows and a 

soil packer (Davies et al. 2015a). While they may have a working depth of 0.3-0.35 m, depth of 

incorporation is often 0.25 m or less. Large offset discs can also have disc diameters up to 0.8-1.0 m 

and work as deep as 0.3 m; however effective incorporation of the surface often only occurs to a depth 

of 0.2-0.25 m (Davies et al. 2015a, see Table 2). Rotary spading typically follows deep ripping and has 

a working depth of 0.35-0.4 m (Scanlan and Davies 2019, Ucgul et al. 2018, see Table 2). 

Rotary spaders have a shaft which rotates, typically at ~90 revolutions per minute in the direction of 

travel. Attached are sets of curved tynes, on the end of which are, typically, triangular-shaped spades 

that help bury topsoil at depth while also lifting some subsoil to the surface (Scanlan and Davies 2019, 

Ucgul et al. 2018). Incorporation by a spader is not uniform; rather the spades bury deeper ‘pockets’ of 

topsoil (Figure 1) in a grid pattern when viewed from above, through various soil layers (Ucgul et al. 

2018). Rotary spaders typically bury about 50-60% of the topsoil (Ucgul et al. 2018, Scanlan and Davies 

2019, see Table 2). 
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Figure 1. Images demonstrating a range of strategic deep tillage implements and the impact they have on the soil 

profile. Note incorporation dark coloured topsoil caused by each implement (Photos: Stephen Davies, Department 

of Primary Industries and Regional Development WA and Erin Cahill, agVivo image modified one-way plough). 

Soil inversion is perhaps the most extreme strategic deep tillage option, resulting in the topsoil being 

nearly completely buried underneath a layer of subsoil 0.15-0.35 m deep (Figure 1). This provides an 

opportunity to:  

 bury water repellent topsoil and lift wettable subsurface soil to the surface;  

 incorporate lime, deeper into the soil profile;  

 redistribute topsoil nutrients and organic matter into the crop root zone; and  

 lift higher clay content subsoil to the surface, depending on soil type (Davies et al. 2013).  

The principal advantage of inversion over soil mixing is more effective amelioration of topsoil water 

repellence (Roper et al. 2015) and the near complete burial of weed seeds (Peltzer and Matson 2006, 

Davies et al. 2010, Newman and Davies 2010, Aulakh et al. 2012) which can slow the evolution of 

herbicide resistance (Renton and Flower 2015). Soil inversion is typically undertaken with a 

mouldboard or ‘square’ plough but more recently modified one-way disc ploughs have also been used. 

The modifications involve removal of every second disc and fitment of larger and often more concave 

discs, increased break-out pressure on the jump arms and may involve adding more weight to the 
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plough, depending on the model used. These modifications allow deeper working, more space for soil 

to turn over and a greater degree of inversion. Mouldboard ploughs provide the most complete inversion 

(Ucgul et al. 2017, Scanlan and Davies 2019), but square and one-way ploughs are cheaper to purchase 

and effective with good setup and soil conditions (Ucgul et al. 2019), though weed seed burial is inferior 

to the mouldboard plough. Mouldboard ploughs typically bury 80-95% of the topsoil below the top 0.1 

m (Ucgul et al. 2017, Scanlan and Davies 2019, see Table 2) while one-way ploughs bury 60-75% of 

the topsoil (Scanlan and Davies 2019, Ucgul et al. 2019, see Table 2).  

Strategic deep tillage practices are often implemented in combination, either at the same time or in 

series over several years (Davies et al. 2018). The most common combinations involve deep ripping 

together with either soil mixing or inversion (Davies et al. 2018) or clay delving with subsequent 

incorporation. Timing of this ripping after inversion can vary, but generally occurs within 2-4 years. 

Use of controlled traffic farming systems can increase the longevity of soil loosening benefit from 

strategic deep tillage by confining machinery compaction to permanent wheel-tracks (Ellington 1986, 

Chan et al. 2006). However, some subsoils naturally ‘re-compact’ after loosening and may require 

occasional deep ripping (Needham et al. 2004a). 

Effects on crop growth and yield 

 Deep ripping to alleviate subsoil hardpans is most beneficial on deep sands and deep sandy duplex soils 

(Jarvis 1986b, Hamza and Anderson 2003), with responses on heavier-textured soils more variable and 

less reliable (Ellington 1986, Kirkegaard et al. 2008, Armstrong et al. 2009). Yield benefits from ripping 

result from improved root growth extension rates and final rooting depth which contribute to subsoil 

water access and more efficient nitrogen capture (Delroy and Bowden 1986). In sandy soils, deep 

ripping typically results in substantial increases in grain yield, of the order of 20-40% in the first season 

after ripping (Hamza and Anderson 2003, Armstrong et al. 2009). Yield benefits from deep ripping 

typically decline substantially in subsequent seasons. Despite yield increases of 19% in the year of 

ripping (sandy duplex), Hamza and Anderson (2003) report that by the third year the yield benefit had 

disappeared. Reasons for a neutral or negative response to ripping include:  

 enhanced vegetative crop growth driving greater water use with insufficient moisture left for 

grain filling (Delroy and Bowden 1986);  

 bringing excessive clay or hostile subsoil to the surface on heavier-textured soils (Kirkegaard 

et al. 2008, Armstrong et al. 2009, Blackwell et al. 2016);  

 loss of soil structure; or  

 not fully overcoming compaction or other soil constraints present, such as acidity (Coventry et 

al. 1987). 

On deeper sands, increasing ripping depth up to 0.8 m to remove deeper compaction can substantially 

increase the crop yield benefit in situations where traditional ripping depths of 0.3-0.4 m have not 

improved yield (Blackwell et al. 2016, Isbister et al. 2016, Davies et al. 2018). Blackwell et al. (2016) 

reported yield increases of 83-137% following ripping to 0.55 m, compared with minimal response 

following ripping to 0.3 m.  

Crop response to ripping with topsoil slotting to incorporate surface organic matter and amendments 

deeper into the profile have been mixed (Blackwell et al. 2016, Davies et al. 2015a). Blackwell et al. 

(2016) reported that, for deep ripping to 0.55 m following spreading of surface-applied lime on deep 

sand and sandy duplex sites, wheat yield benefits from topsoil slotting ranged from 16-32% over deep 

ripping with no slotting. Lime addition improved the benefit at several of the more acidic sites, 

consistent with previous research (Coventry et al. 1987, Davies et al. 2008). In contrast Davies et al. 

(2018) found no significant benefit to wheat yields (-12-10%) from topsoil slotting across two sites and 

two ripping depths compared with ripping alone. Parker et al. (2017) reported reduced yields from 

topsoil slotting for lupin in the second season, noting that the soil opener which facilitates topsoil 

slotting had also acted to re-compact the soil between the tynes. On heavier soil types, including a 

calcareous loam, loamy duplex and grey clay, crop yield response to topsoil slotting showed no positive 
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yield responses in the first year (Blackwell et al. 2016) but on the grey clay in the second season 

increased barley yield by 0.67 t/ha over ripping only (Parker et al. 2017). 

Broad-faced ripping tynes can delve (lift) clay-rich subsoil within the 0.3-0.6 m layer into the sandy 

textured surface A-horizon of duplex (texture contrast) soils. This results in benefits from deep subsoil 

loosening and removal of hardpans and topsoil water repellence but can also improve the fertility, pH 

and moisture holding of the sandy A-horizon (Bailey et al. 2010, Bailey and Hughes 2012, Betti et al. 

2015, 2016, 2017). Variability in crop response to delving has been attributed to differences in the 

machinery used, the depth and extent of mixing between the soil horizons, and the timing of operation.  

Cereal grain yields are increased by around 50% on average in the first two years following rotary 

spading on deep sands and deep sandy duplex soils (Davies et al. 2019). This represents a yield increase 

of 0.42-0.73 t/ha depending on soil type. Growth and yield increases are in part driven by increased 

mineralisation of organic matter, leading to greater nutrient supply, along with nutrient redistribution, 

establishment, soil loosening and soil pH benefits. Once these effects subside, residual yield responses 

appear soil type dependent, falling to 11% (0.22 t/ha) on average for pale deep sands but remaining at 

33% (0.55 t/ha) for stronger deep sands, sandy earths and deep duplex soils (Davies et al. 2019). Current 

research indicates that benefits from rotary spading can last at least 4-5 years on better sands but may 

be more limited on infertile and low clay content deep sands (Davies et al. 2019).  

Crop grain yield responses to soil inversion can be large and sustained for 8 or more years (Davies et 

al. 2015b, Davies et al. 2019). Soil inversion on average increases cereal grain yield by 30-60% (0.54-

0.88 t/ha) in the first 2-years depending on soil type (Davies et al. 2019). As with deep soil mixing, 

responses tend to be lower on low fertility deep sands, and higher on deep sandy duplex and repellent 

gravel soils. Residual cereal yield benefits average 21-27% (0.51-0.68 t/ha) for most soils. For pale 

deep sands residual yield benefits typically decline after several years except for severely repellent deep 

sands where the untreated condition is particularly poor (Davies et al. 2019).  

While benefits of ameliorating sands through deep soil mixing and soil inversion are apparent, there are 

numerous substantive risks, including:  

 acute short-term wind erosion risk with complete stubble burial;  

 surface crusting from lifting higher clay content subsoil to the surface with low organic matter;  

 increased activity of pre-emergent herbicides resulting in greater risk of crop damage (Edwards 

et al. 2018) as well as opportunity for improved weed control;  

 loss of soil organic carbon from tillage effect;  

 poor seed depth control on loosened soils;  

 re-compaction, especially if traffic is not controlled; and  

 run-down of soil fertility.  

These risks can be managed by growers but highlight the complexity and management required to 

achieve an ‘optimal’ outcome. 

Strategic deep tillage with soil amendments 

For soils with a combination of soil physicochemical constraints, soil amendments together with 

strategic deep tillage may be needed to address the interacting constraints, stabilise or improve soil 

structure or improve subsoil fertility all of which may improve the size and longevity of the amelioration 

benefit (Ellington 1986, Coventry et al. 1987, Hamza and Anderson 2003).  

Lime incorporation into acidic subsoils 

Movement of lime to depth is influenced by soil properties (texture, initial pH, pH buffering capacity), 

rainfall (duration and intensity) and lime (quality, particle size and rate of application, Whitten et al. 

2000) but is generally very slow without physical intervention (Li et al. 2019). Conyers and Scott (1989) 

demonstrated that application rates of 8 t/ha were required to increase pH several centimetres below the 

depth of incorporation in loam topsoil of a southern NSW duplex soil. However, the mechanism of 
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alkali movement is related to the pH following liming and not the rate of lime itself (Scott and Conyers 

1995). They recommended liming to a pHCa >5.5 to facilitate alkali movement below the incorporation 

layer to the 0.1-0.2 m layer in their example. However long-term field experimentation demonstrates 

that the rate of subsoil pH increase remains slow, 0.04 pH units per year in the 0.1-0.2 m layer (Li et al. 

2019).  

Use of tillage to incorporate liming products to greater depth allows for more immediate amelioration 

of soil acidity in the subsoil. On acidic deep sandy textured soils with low pH buffering capacity, 

compaction and minimal subsoil structure, surface liming followed by incorporation using strategic 

deep tillage is an effective amelioration intervention (Gazey and Davies 2009). Rotary spaders, large 

offset discs and mouldboard ploughs have been used to incorporate lime into acidic sands (Davies et al. 

2015a). The interaction of soil inversion with a mouldboard plough and lime application improved 

barley yield and reduced ryegrass biomass in a replicated experiment on deep yellow sand in WA, eight 

seasons after the amelioration was applied (Figure 2, Davies et al. 2015b). 

For soils with higher clay content, deep tillage to depths of 0.3-0.4 m requires large energy inputs, can 

damage soil structure and increase erosion risk, especially if poorly structured A2 horizons are brought 

to the soil surface (Kirchhof et al. 1995). For example, broadcasting lime at high rates (20 t lime/ha) 

prior to ripping or delving was shown to have limited benefit in ameliorating subsoil acidity (Kirchhof 

et al. 1995, see Figure 3a). Thus, deep tillage to incorporate lime into bulk soil is not commonly used 

on the loam and clay soils of south-eastern Australia, though beneficial interactions have been measured 

(Coventry et al. 1987). On sandy clay loam with a dense hardpan and subsoil acidity in north-east 

Victoria, lime application was necessary to achieve a deep ripping response and the ripping was still 

effective after 4-years (Coventry et al. 1987).  

Where deep tillage of bulk soil may be uneconomic or impractical, techniques that amend specific 

portions of the soil profile or areas under or adjacent to seeding rows have been assessed (e.g. Davies 

et al. 2008, Blackwell et al. 2016, Sale et al. 2019). Lime slotting by mechanically cutting slots, 0.15 

m wide and 0.8 m deep, in the profile to remove soil, mixing that soil with lime at 20 t lime/ha and then 

replacing the amended soil back to the slot, was effective in increasing soil pH (Figure 3a) in the slot 

(Kirchhof et al. 1995) and resulted in 46% of the yield of a completely amended soil (Jayawardane et 

al. 1995). However the use of such high lime rates and specialised intensive machinery limit the 

practicality of this method in dryland cropping systems.  

 

 

Figure 2. Impact of lime application and mouldboard ploughing (MBP) applied in 2007 on: a) barley grain yield 

(t/ha); b) above-ground ryegrass biomass (t/ha, right) in 2014. For treatments with lime, all were surface applied 

at total rate of 2 t/ha either without incorporation (2t Lime); split with half (1 t/ha) before and after MBP (1t + 

MBP + 1t); all applied before MBP (2t + MBP); or all applied after MBP (MBP + 2t). Bars show standard error 

of the mean of 4 replicates (adapted from Davies et al. 2015b) 
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Figure 3. Impact of lime application and placement on soil pH profiles for: a) a yellow Podosol showing untreated 

(control), lime followed by ripping or delving and slotting of lime amended soil (adapted from Kirchhof et al. 

1995); and b) a Chromosol at Rutherglen, Victoria, showing untreated (control), surface lime and direct deep (0.3 

m) lime placement (adapted from Condon et al. 2018) 

Direct placement of lime has been achieved with modified deep rippers, fertiliser spreaders and air 

delivery systems to create machines that blow lime into subsoil seams to a depth of 0.3 to 0.4 m (Davies 

et al. 2008, Li and Burns 2016). This machinery can ameliorate subsoil acidity to the depth of placement 

(Figure 3b) and also decrease soil strength (Davies et al. 2008, Li and Burns 2016, Condon et al. 2018). 

Yield responses from this approach have been mixed, with crop yields failing to respond at a range of 

sites in southern NSW (Swan et al. 2011, Li and Burns 2016) but was shown to increase wheat yield 

by 20-30% in WA deep sands with acidic subsoils (Davies et al. 2008, Gazey and Davies 2009). For 

the southern NSW sites, drought conditions experienced during the trial years 2007-9 may have limited 

the opportunity for a crop response (Swan et al. 2011). Direct lime placement and partial amelioration 

of acidic subsoils enables lime application rates to be decreased, potentially to economically viable 

rates.  

Application rates of dolomite or lime of 2.3 and 2.5 t/ha, respectively, ameliorated the acidity in the 10-

30 cm of a Chromosol at Rutherglen, Victoria (Figure 3b) resulting in more than a 10% increase in 

canola yield compared with an unlimed control (Condon et al. 2018). Some versions of direct placement 

equipment can apply organic material and other inorganic amendments to specific layers of the soil, 

allowing amelioration of acidity and provision of subsoil nutrition, thereby addressing multiple crop 

productivity constraints (Condon et al. 2018). Apart from the need of specialised equipment and slow 

application process, a major limitation to success of direct deep lime placement is poor vertical 

distribution and a discontinuity of the ameliorated subsoil which would likely limit the benefit obtained. 

Clay spreading and incorporation on sands 

Addition of clay-rich subsoil to sands, known as claying, was first trialled in 1968 by South Australian 

farmer, Clem Obst, near Bordertown. After spreading a clay-rich subsoil on a sandy rise following 

excavation of a new dam, Obst (1994) recalls an immediate and long-lasting improvement in soil 

wettability, successfully growing clover and lucerne on clay-spread areas in following years. It is now 

estimated that 0.16 Mha of land have been clay modified in southern and Western Australia (Churchman 

et al. 2014). 

Where available, incorporation of clay subsoil provides a permanent amelioration of soil water 

repellence but can also modify soil pH, nutritional status, moisture dynamics, carbon sequestration, soil 

stability and biological activity. Improved plant nutrition, particularly potassium from the applied clay, 

and greater water infiltration are key factors behind improved productivity on clayed soils (Hall et al. 

2010). Substantial benefits (up to 22 t/ha increases) to soil organic carbon (SOC) stocks (0-30 cm) have 

also been associated with increased clay content (Schapel et al. 2017, 2018), although the benefits of 
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this on improved biological fertility and nutrient retention and supply have been poorly quantified to 

date.  

Surface spreading of clay is undertaken when clay B-horizon subsoils are too deep to be delved 

effectively. Clay spreading involves excavation and broadcast spreading of a clay-rich subsoil from a 

large pit over deep, typically repellent, sands (Davenport et al. 2011). Spreading is typically undertaken 

using carry graders, purpose-built spreaders or heavy-duty multi-spreaders. Once spread, a range of 

deep cultivation approaches (e.g. tynes, off-set discs, harrows, rotary hoe) are used to incorporate the 

clay into the top 0.1 to 0.2 m. Subsoil clays are typically spread at rates of 100-300 t/ha, aiming to 

increase the topsoil clay content to the 3-6% clay required to overcome repellence (Hall et al. 2010, 

Davenport et al. 2011). High rates (200 t/ha or more) can be difficult to incorporate effectively and can 

lead to negative impacts, such as soil sealing, poor emergence and restricted root development 

(Davenport et al. 2011). Implements for deeper incorporation, such as rotary spaders and large-diameter 

deep working offset discs help minimise this risk. 

Although expensive, claying practices have been shown to double crop yields, with an expectation of 

permanence (Cann 2000). Yield increases of 0.3-0.6 t/ha have been reported on a WA sandplain soil 

(Hall et al. 2010).  

Incorporation of organic amendments 

Organic amendments have the potential to provide benefits over and above their nutritional value alone 

including altering:  

 physical condition through changing structural stability, porosity and bulk density, which 

impact root growth and water dynamics;  

 chemical condition through changing pH buffering, cation exchange capacity, and chelation 

which affect nutrient supply and retention; and  

 biological functions including nutrient cycling rates, and the balance between beneficial and 

pathogenic organisms. 

The use of organic amendments in agriculture has been reviewed previously (Edmeades 2003, Quilty 

and Cattle 2011, Abbott et al. 2018). In general, these reviews focus on results from surface application 

of amendments, often in terms of disposal of ‘wastes’, where there has been a focus on nutrient budgets. 

These overseas studies have often failed to account for other potential benefits to productivity by using 

these organic amendments if soil physicochemical constraints are present. A recent Australian study 

(Celestina et al. 2018) compared surface and subsoil application of organic amendments or additional 

matching inorganic fertiliser applications and found that over the first two years following application 

the yield response could generally be attributed to additional nutrient supply, particularly nitrogen. The 

impact of any amendment in overcoming a physicochemical constraint in the subsoil will be negated if 

there is either no subsoil water , as occurs in very low rainfall years, or when the crop can rely on water 

in the topsoil and so can be highly season-dependant (Nuttall and Armstrong 2010). Similarly, no long-

term beneficial effect of the amendments will occur if there are no physical constraints present, such as 

occurs on many well-structured soils, such as vertosols. Furthermore, it may take several years for the 

benefits of organic amendments to become evident, as they result not only from the short-term direct 

nutrient effects, but longer-term indirect effects. Indirect effects include those resulting from altered 

root growth and distribution, as well as enhanced aggregation resulting from microbial processes 

(hyphal binding, extracellular polymer binding, Six et al. 2004, Tisdall and Oades 1978). This has been 

demonstrated in recent research targeting poorly structured sodic subsoils where subsoil manuring 

(chicken litter placed at 0.3-0.4 m) improved grain yields through both improved crop nutrition and soil 

structure (Gill et al. 2019, Sale et al. 2019). Gill et al. (2019) demonstrated seasonal impacts on response 

with no difference between surface and subsoil manuring at one site in an ‘average’ rainfall season but 

a significant advantage of subsoil manuring over surface manuring in a season with a dry spring, where 

the crop was reliant on subsoil water reserves during grain filling. Transport and application costs can 

be challenging for profitability of organic amendments although, where successfully applied to 

overcome subsoil constraints, the potential for profitable outcomes has been demonstrated (Sale and 
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Malcolm 2015, Trengove and Sherriff 2018, Gill et al. 2019). Further work appears necessary to 

attribute growth and yield impacts from deep organic amendments to nutritional or other mechanisms 

and to assess economic feasibility (Gill et al. 2019, Celestina et al. 2018, 2019).  

In sands, rotary spading, topsoil slotting, soil inversion or direct deep placement can be used to 

incorporate organic amendments into the profile. In South Australia (SA) the combination of deep 

ripping to 0.3 m with surface applied chicken litter (5 t/ha) and/or high fertiliser rates has been evaluated 

(Trengove and Sherriff 2018). The outcomes demonstrate strong seasonal and rotational effects, with 

barley (2016) responding to increased nutrition, and lentils (2017) responding to ripping. Overall, the 

cumulative three-year yield gains for a wheat-barley-lentil rotation above the 4.4 t/ha control were +3 

t/ha, +2.4 t/ha, and +2 t/ha under high annual fertiliser rates, deep ripping and chicken litter treatments, 

respectively. The costs associated with high fertiliser treatments, compared with lower costs of ripping 

or chicken litter, result in ripping alone having the highest return on investment, followed by ripping 

with chicken litter (Trengove and Sherriff 2018). 

For neutral-to-alkaline soils with clay subsoils and multiple physicochemical constraints, it is generally 

necessary to ameliorate chemically these subsoils using amendments such as gypsum or nutrient-rich 

organic matter. Purely physical amelioration of these soils, such as deep ripping, are often ineffective 

(Nuttall et al. 2005, Armstrong et al. 2009). Use of nutrient-rich organic matter has proven effective 

but the processes underpinning this remains unclear. Improved productivity is associated with 

additional nutrition (Celestina et al. 2018) and increased use of subsoil water from improvements in 

both physical structure and fertility of the subsoil (Gill et al. 2012, Gill et al. 2019). Yield responses of 

27 up to 250% over an untreated control have been achieved in the Victorian High Rainfall Zone (Sale 

et al. 2019, Gill et al. 2019). These yield increases arising from deep placement of amendments 

generally last several years, which is an important consideration when needing to offset high upfront 

costs of implementation (Sale and Malcolm 2015). 

Economic consequences of strategic deep tillage 

For the purpose of understanding the economic impacts of strategic deep tillage, tillage treatments have 

been categorised as either deep ripping or soil mixing/inversion. 

Deep ripping is most effective on deep sandy-textured soils and less effective on heavy clay soils. 

Armstrong et al. (2009) provides a summary of yield responses to deep ripping by soil type. On 

responsive soils, average wheat yield responses were found to be 33% in New South Wales, 10-23% in 

SA, 23-25% in Victoria and 20-47% in WA.  

Deep ripping generally costs $40-100/ha depending on soil type (Table 2), with benefits lasting about 

3 seasons (Isbister 2017). Deep ripping is generally not cost-effective unless conducted on a soil with 

high productive potential, or in conjunction with other amelioration options to address other soil 

constraints, such as acidity, nutrient deficiency or toxicity, sodicity or topsoil water repellence 

(Armstrong et al. 2009, Petersen et al. 2019).  

Soil mixing or inversion provides long-term and reliable benefits for most repellent soils. Davies et al. 

(2019) reviewed trial data from WA during 2009-2018 and found that cereal responses to soil 

mixing/inversion range from 56-86% in the first and second year after treatment, and 11-49% in the 

third and subsequent years. Yield response for canola was approximately 24%, and that for lupin 20-

50%. Field research results in SA are similar, although soil mixing/inversion resulted in very high yield 

increases (200%) on some soils with low (0.5 t/ha) control yields (Fraser et al. 2016, Macdonald et al. 

2019). 

Soil mixing/inversion can cost $50-150/ha depending on the soil type and technique (Table 2) and 

benefits last more than 10 years (Davies et al. 2015b). Soil mixing or inversion is generally worthwhile 

even when yield potential is low and other soil constraints are present.  

Significantly higher benefits are generated when strategic deep tillage and other amelioration options 

are combined to address limiting constraints within a soil. This may include use of more than one 
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strategic deep tillage method (e.g. deep ripping as well soil mixing/inversion) as well as incorporating 

amendments such as fertilisers, clay, lime, and/or organic matter.  

Recent research in Victoria on a Sodosol in a High Rainfall environment (550 mm annual rainfall) 

showed deep ripping alone to have little impact on yields, but deep ripping in conjunction with gypsum, 

nutrients, wheat straw+ nutrients or chicken manure resulted in yield responses of 12-16% on high 

yielding soils (mean grain yield of control = 6.3 t/ha, unpublished data). Even higher yield responses 

(up to 200%) have been recorded following application of nutrient-rich organic matter to clay soils in 

high rainfall environments in South Australia and southern NSW (unpublished data). Assuming a $300/t 

grain price, this is a gross benefit of $225-300/ha. Sale and Malcolm (2015) found amending sodic soils 

by subsoil manuring (20 t/ha) to be expensive ($1,300-$1,400/ha) but cost effective, generating a net 

present value over 4 years of $1,390-$1,810/ha. The question about whether similar or better returns 

could be achieved with improved nutrition alone remains open (Celestine et al. 2019). 

Higher profits are generally gained by spending a limited budget addressing all constraints within an 

area of the farm, rather than addressing one constraint over a larger area. This is because the full yield 

benefit of any one soil amelioration technique cannot be realised until other limiting constraints are 

addressed. However, it can also be profitable to undertake low cost and easy to implement partial-

amelioration options if they can be applied to larger areas of the farm in a given year, and still provide 

a portion of the yield benefit (Blackwell et al. 2014). Prioritising constraints to be addressed, or regions 

of the farm to ameliorate, depends on local soil conditions, the cost of amelioration, the attainable yield 

and the price of grain. The WA Department of Primary Industries and Regional Development have 

developed a decision tool called ROSA (Ranking Options for Soil Amelioration) to help consultants 

and farmers make this comparison (Petersen et al. 2019). 

ROSA can be used to illustrate the benefits of addressing multiple constraints rather than single 

constraints in WA. For example, a sandy or deep sandy duplex soil with significant topsoil water 

repellence, subsoil compaction and acidity (pH: 0-0.1 m = 4.8, pH: 0.1-0.3 m = 4.5) issues. The net 

present value (NPV) over a five-year period of addressing single constraints of water repellence 

(through soil mixing/inversion) or subsoil compaction (through deep ripping) is approximately $140/ha 

and $30/ha, respectively. However, addressing multiple constraints of water repellence, subsoil 

compaction and acidity (through soil mixing, deep ripping and liming) results in a 5-year NPV of 

approximately $1,440/ha. 

It is important to note that the benefits and costs of strategic deep tillage differ significantly across 

regions of Australia; these examples should be considered as indicative only of the benefits that can be 

gained from strategic deep tillage for soil amelioration.  

Future directions in strategic deep tillage 

Strategic deep tillage, often in conjunction with an amendment, can be used successfully to overcome 

a range of soil physicochemical constraints. The high cost of such approaches are a barrier and grain 

growers need greater confidence that the interventions will likely result in profitable productivity 

increases over the medium to long-term. Following amelioration with strategic deep tillage, 

management strategies based on long-term controlled traffic, no-till and stubble retention will enable 

the improved yield potential from overcoming soil constraints to be maximised and sustained and 

reduce the risk of negative environmental impacts. 

The most convincing current evidence for strategic deep tillage exists for deep sandy-textured soils or 

texture contrast soils with deep A-horizons. On these soils, improved rooting depths can be obtained by 

removal of constraints and the weakly developed soil structure is less susceptible to damage from deep 

tillage intervention. There is a need to better understand how soil fertility and biological activity can be 

improved and maintained following amelioration to sustain higher potential yields on these soils. Soil 

amelioration may provide an opportunity to build soil organic carbon levels as more of the soil profile 

becomes biologically active, soils are mixed and production of above- and below-ground plant biomass 
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increases. However, apart from clay addition to sands, a cost-effective system or strategy to build soil 

carbon  on many dryland cropping soils remains elusive.  

The nature of physicochemical constraints associated with higher clay content neutral-alkaline soils 

used for grain production presents particular challenges. High clay content, combined with low rainfall 

and high evaporation environments, results in high soil strengths and increased energy costs to 

physically alter the subsoils. Furthermore, many of the constraints are chemical, such as high sodicity, 

leading to dispersion and poor structure when soils are wet and high penetrometer resistance when dry. 

The severity also usually increases with depth. Amelioration then almost always requires amendment 

addition, likely at depth, further increasing cost and reducing the feasibility of such approaches. In 

regions with higher, more reliable rainfall, large increases in yields may sometimes justify the initial 

significant financial investment required, but there remains considerable uncertainty in predicting when 

such interventions will improve yield and profit. Targeted subsoil interventions and the promise of 

stimulating further ‘biological’ improvement of the subsoil condition following intervention requires 

further research. Where amelioration is not financially or logistically feasible, growers will need use 

better adapted, more tolerant crop varieties or species and manage agronomic inputs to match the 

constrained yield potential.  

Amelioration of soil constraints can, in part, enable a reduction in the gap between current and potential 

water limited grain yields but capturing and sustaining this benefit will require the simultaneous 

implementation of a range of management strategies to reduce the range of abiotic and biotic constraints 

that limit grains productivity.  
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