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A B S T R A C T

In the rapidly changing cybersecurity landscape, threat hunting has become a critical proactive defense against
sophisticated cyber threats. While traditional security measures are essential, their reactive nature often falls
short in countering malicious actors’ increasingly advanced tactics. This paper explores the crucial role of
threat hunting, a systematic, analyst-driven process aimed at uncovering hidden threats lurking within an
organization’s digital infrastructure before they escalate into major incidents. Despite its importance, the
cybersecurity community grapples with several challenges, including the lack of standardized methodologies,
the need for specialized expertise, and the integration of cutting-edge technologies like artificial intelligence
(AI) for predictive threat identification. To tackle these challenges, this survey paper offers a comprehensive
overview of current threat hunting practices, emphasizing the integration of AI-driven models for proactive
threat prediction. Our research explores critical questions regarding the effectiveness of various threat hunting
processes and the incorporation of advanced techniques such as augmented methodologies and machine
learning. Our approach involves a systematic review of existing practices, including frameworks from industry
leaders like IBM and CrowdStrike. We also explore resources for intelligence ontologies and automation tools.
The background section clarifies the distinction between threat hunting and anomaly detection, emphasizing
systematic processes crucial for effective threat hunting. We formulate hypotheses based on hidden states and
observations, examine the interplay between anomaly detection and threat hunting, and introduce iterative
detection methodologies and playbooks for enhanced threat detection. Our review encompasses supervised
and unsupervised machine learning approaches, reasoning techniques, graph-based and rule-based methods,
as well as other innovative strategies. We identify key challenges in the field, including the scarcity of labeled
data, imbalanced datasets, the need for integrating multiple data sources, the rapid evolution of adversarial
techniques, and the limited availability of human expertise and data intelligence. The discussion highlights
the transformative impact of artificial intelligence on both threat hunting and cybercrime, reinforcing the
importance of robust hypothesis development. This paper contributes a detailed analysis of the current state
and future directions of threat hunting, offering actionable insights for researchers and practitioners to enhance
threat detection and mitigation strategies in the ever-evolving cybersecurity landscape.
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1. Introduction

In the evolving landscape of cybersecurity, emerging threats, and
lateral movement tactics pose significant challenges. Lateral movement
refers to the techniques attackers use to navigate through a network
after gaining initial access, seeking to elevate privileges, or access
sensitive data. These threats often remain undetected for extended
periods, enabling adversaries to embed themselves deeply within an
organization’s infrastructure. Such threats can be remotely activated
by attackers or triggered by seemingly benign user actions, exploiting
vulnerabilities, and leveraging legitimate processes and applications to
evade detection. The stealthy nature of certain tactics — e.g. a stealthy
lateral movement characterized by a set of unique features, such as
requiring no elevated privileges, creating no new connections, neces-
sitating no additional authentication, and involving no process injec-
tion — renders them undetectable by state-of-the-art (SOTA) detection
mechanisms (Niakanlahiji et al., 2020). These tactics allow malicious
actors to orchestrate sophisticated attacks, posing a substantial risk to
information security.

The 2024 Global Threat Report has identified over 230 active
adversaries and reported the fastest eCrime breakout time recorded at
just 2 min and 7 s in 2023. This underscores the pressing need for rapid
detection and response capabilities to mitigate these swift intrusions.
The report highlights a significant rise in covert cyber activities, with
substantial increases in data theft, cloud breaches, and malware-free at-
tacks. These trends indicate that adversaries are continuously evolving
and adapting despite advancements in detection technologies (Crowd-
Strike, 2024). Additionally, the adversarial use of generative AI (Arti-
ficial Intelligence) has escalated concerns regarding the development
of highly convincing social engineering campaigns and the creation of

malicious software, tools, and resources for more potent attacks. Trends
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from 2023 indicate that AI was frequently employed for social engi-
neering, with the technology’s capabilities offering adversaries endless
opportunities to enhance their sophistication.

To counteract these advanced threats, a multifaceted approach is
imperative. Strategies to mitigate attacks that involve emerging threats
and lateral movement include the deployment of advanced intrusion
detection systems (IDS) that employ behavioral analysis and anomaly
detection techniques (Hossain et al., 2017). Implementing strict access
controls and segmenting networks can also limit the ability of an
attacker to move laterally. Additionally, continuous monitoring and
real-time analysis of network traffic and user behavior can help identify
suspicious activities early. Employing endpoint detection and response
(EDR) solutions and conducting regular vulnerability assessments and
penetration testing are also critical components of a robust cybersecu-
rity posture. These measures aim to reduce the attack surface and detect
threats before they can cause significant damage (Hassan et al., 2020).

However, despite these proactive and comprehensive approaches,
the dynamic nature of cybersecurity threats often outpaces the capabili-
ties of even the most advanced defensive measures. The aforementioned
strategies are essential but not sufficient in isolation to address the
full spectrum of new and emerging threats. This insufficiency stems
from several critical factors. Attackers continuously adapt and evolve
their tactics, techniques, and procedures (TTPs) (Alsaheel et al., 2021),
making it difficult for static defense mechanisms to keep pace. The
complexity of modern IT environments, characterized by cloud services,
Internet of Things (IoT) devices, and remote access, significantly ex-
pands the attack surface, offering multiple vectors for exploitation (Ju-
rcut et al., 2020). The multidimensional nature of the data generated
by these complex environments complicates the task of effectively
analyzing and identifying subtle and intricate patterns indicative of
a breach (Tang et al., 2022). Additionally, the lack of resources and

skilled analysts typically limits the ability of organizations to analyze
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and interpret the vast amounts of data generated by security tools,
leading to potential oversight of critical threats.

In response to these challenges, the discipline of threat hunting
has emerged as a critical component in the fight against sophisticated
cyber threats. In an era dominated by big data — with issues such as
unstructured data, and the heterogeneity of data sources — traditional
security measures often fall short (Tang et al., 2022). Threat hunting in-
volves proactively searching for cyber threats and suspicious activities
that evade existing security solutions, leveraging known indicators of
compromise (IoCs) and analyzing patterns that may suggest malicious
activities (Gao et al., 2021a). The complexity and volume of data,
combined with the need for timely detection and response, necessitate
the use of advanced analytical techniques and the exploitation of
legitimate processes (Botacin et al., 2021; Mahboubi et al., 2021) and
applications to uncover stealthy attacks. This proactive approach helps
organizations stay one step ahead of attackers, minimizing the risk of
significant breaches before they manifest into full-blown attacks.

Industries across the spectrum are increasingly adopting threat
hunting practices, guided by frameworks and standards developed
by cybersecurity organizations. Tools such as Splunk, RedLine, and
Loki (Milajerdi et al., 2019a) have become indispensable in this en-
deavor, providing data analytics capabilities to sift through large
amounts of data in search of anomalies and IoCs. However, the detec-
tion of lateral movement remains a formidable challenge for current
security models. The utilization of legitimate system processes and
applications by attackers to conduct their operations complicates the
identification of malicious activities. Consequently, threats often re-
main undetected, exploiting the blind spots of traditional security
tools. The complexity of modern IT environments, coupled with the
sophistication of attack techniques (Alzaabi and Mehmood, 2024),
demands innovative approaches to detect these stealthy maneuvers.

In response to these challenges, the concept of developing an
‘avatar’ through threat hunting has gained traction. This approach aims
to create a comprehensive understanding of current methodologies
and existing challenges through empirical and experimental analy-
sis (Horta Neto and Fernandes Pereira dos Santos, 2020). A review of
the literature underscores the need for a paradigm shift towards more
adaptive and intelligence-driven security strategies (Schlette et al.,
2021b; Li et al., 2022a). Issues such as the lack of labeled datasets for
machine learning (ML) models (Bae et al., 2024; Mikhail et al., 2020),
over-reliance on statistical analysis (Jadidi and Lu, 2021), and the need
for contextual understanding of network behavior highlight the gaps in
current approaches.

1.1. Research objective and questions

This systematic review paper aims to investigate the rapidly evolv-
ing domain of cybersecurity, with a specific focus on threat hunting as
a proactive defense mechanism against advanced cyber threats. It seeks
to explore the evolution of threat hunting practices, assess the current
state of research on formal mathematical hypotheses in threat hunting,
analyze existing approaches and techniques developed by the research
community, and outline the primary challenges faced by practitioners
in the field. We pose the following research questions:

1. RQ1: How has the evolution of technology and methodologies
impacted the development and practices of threat hunting over
time?

2. RQ2: What is the current status of research on the development
and application of formal mathematical hypotheses in threat
hunting? Is there potential for formulating a comprehensive
and adaptable mathematical model to enhance threat hunting
practices?

3. RQ3: What methodologies and strategies have been devised by

the research community for effective threat hunting?
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4. RQ4: What are the primary challenges faced by professionals
in the field of threat hunting, and what are the state-of-the-art
approaches to address these challenges?

By addressing these questions, this paper aims to provide insights
into the evolution, current state, methodologies, and challenges of
threat hunting within the cybersecurity landscape.

1.2. Methodology

To answer research questions RQ1–RQ4, we conducted a systematic
iterature review (SLR) (Lame, 2019) staged across several phases, as
hown in Fig. 1. In Phase 1, papers with any of the key phrases ‘‘threat
unting’’, ‘‘threat detection’’, ‘‘security information management’’, ‘‘ad-
ersary tactics, techniques or procedures’’ or ‘‘cyber threat hunting
echniques’’ in the title were automatically selected. The search was
onducted on several scientific platforms, including IEEE, ACM, Web of
cience, Scopus, and the Google Scholar search engines. Initially, 1696
apers were retrieved for the SLR.

In Phase 2, these papers were filtered by examining the abstracts to
dentify those that contained any of the following key phrases: ‘‘cyber
hreat intelligence’’; ‘‘security analytic/s’’; ‘‘proactive cybersecurity’’;
‘incident response’’; ‘‘behavioral analysis in cybersecurity’’; ‘‘intrusion
etection system’’; ‘‘machine learning in cybersecurity’’; ‘‘threat actor
actics and techniques’’; ‘‘security information and event management’’;
‘endpoint detection and response’’; ‘‘event log’’; and ‘‘log anomaly’’.
he inclusive and exclusive criteria used are shown in Fig. 1. This
iltering resulted in 287 selected papers.

In Phase 3, a scanning phase was conducted by reviewing each
elected paper to determine its relevance to threat hunting or threat
etection; however, survey papers, posters, and letters were excluded.
s a result, 117 papers were selected. To address research questions
Q1–RQ4, we categorized the selected papers as follows: 12 papers
hich focus on threat hunting procedures were selected to address
Q1, as discussed in detail in Section 2. Section 3 clarifies the hypothe-

is formulation of 4 of the selected papers in their threat hunting models
o address RQ2. In Section 4, we analyze the techniques used in 63
apers to answer RQ3. Finally, in Section 5, we identify the challenges
n threat hunting techniques, tactics, and procedures through a review
f 38 papers to answer RQ4.

The structure of the paper is as follows. In Section 2, we explain the
ackground of threat hunting. In Section 3, we explain the hypothesis
ormulation. In Section 4, we review the existing threat hunting ap-
roaches in the literature. Section 5 analyzes the challenges of threat
unting models. In Section 6, we investigate the existing surveys with
focus on threat hunting. Finally, Section 7 discusses the findings,

ollowed by Section 8, which concludes the paper.

. Background

This section offers an in-depth exploration of the evolutionary tra-
ectory of threat hunting, addressing research question RQ1. The evo-
ution of threat hunting in the realm of cybersecurity illustrates a
ynamic shift towards proactive defense strategies against increasingly
ophisticated cyber threats. Originating from the broader field of cy-
ersecurity and network defense, the concept of threat hunting does
ot have a single point of origin or creator. Instead, it represents a
ollective response to the need for more advanced methods of detecting
nd neutralizing cyber threats. Gaining formal recognition in the early
010s, threat hunting embodies a proactive and cyclical process aimed
t preemptively identifying and mitigating potential cyber threats in
omplex network environments, such as those found in enterprise set-
ings. This approach involves the formulation, testing, and refinement
f hypotheses about potential threats, leveraging practices such as
eploying specialized monitoring tools in specific network segments
o gather information and validate or revise initial hypotheses (Shu
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Fig. 1. SLR methodology.
et al., 2018). This methodology seeks not only to uncover and intercept
attacks early but also to identify unusual behaviors that indicate the
presence of harmful entities, thereby enhancing the overall security
posture of organizations (Saeed et al., 2023; Mansfield-Devine, 2017).

The incorporation of modern security solutions such as Security
Information and Event Management (SIEM) (Martins and Medeiros,
2022), and Security Orchestration, Automation, and Response (SOAR)
(Schlette et al., 2021a) into threat hunting practices underscores the
importance of leveraging technology to improve detection capabilities
and investigative efficiency. These systems offer functionalities that
range from vulnerability tracking to event analysis and digital forensics.
However, for these tools to effectively contribute to the enhancement
of enterprise security defenses, they must be integrated with threat
hunting capabilities that enable the proactive discovery of threats (Liu
et al., 2018; Bowman et al., 2020).

One crucial aspect of threat hunting is the differentiation and un-
derstanding of threat indicators, which are pivotal in identifying po-
tential security breaches. The Detection Maturity Level (DML) model
(Mavroeidis and Bromander, 2017) emphasizes the variability in the se-
mantic levels of threat indicators, with higher semantic indicators such
as goals, strategies, or TTPs being more valuable than lower semantic
indicators like network artifacts and atomic indicators, including IP
addresses. This model highlights the necessity for SIEM tools to evolve
beyond providing low-level indicators, advocating for capabilities that
can offer insights into higher-level threat indicators (Bromander et al.,
2016).

Threat indicators are broadly categorized into Indicators of Com-
promise (IoCs) (Jadidi and Lu, 2021). IoCs signal that an incident
has already occurred, thereby placing the organization in a reactive
stance. Examples of IoCs include unusual network traffic, suspicious
user account activity, and login anomalies. Alternatively, Indicators
of Concern, often derived from open-source intelligence (Johnsen and
Franke, 2019), involve collecting data from publicly available sources
to aid in cyberattack detection and threat hunting. This distinction
underscores the varied approaches to identifying and responding to
cyber threats, highlighting the critical role of intelligence and proactive
measures in modern cybersecurity practices.

It is important to note that the threat hunting framework differs
fundamentally from an incident-response process. The key distinction
lies in the nature of their approaches: incident response is a reac-
tive model that addresses security incidents after they have occurred;
whereas threat hunting is proactive, aiming to identify and mitigate
threats before they can inflict harm (Schlette et al., 2021a). Specifically,
an incident-response strategy involves a sequence of actions executed
4 
by a security team following a security breach (e.g. an attack) with
objectives centered around limiting the impact, reducing recovery time,
and cutting down associated costs (IBM, 2024). This plan typically
encompasses steps for detection, digital forensic analysis, investigation,
and recuperation from security breaches. In contrast, threat hunting
is an assertive security approach where security professionals actively
examine system data, leveraging their expertise to spot threats that
might have eluded standard security measures. This approach en-
tails formulating and investigating hypotheses about potential attacks,
grounded in an understanding of the system’s architecture and the
broader threat environment, with the goal of uncovering previously
unidentified threats (Kaiser et al., 2023).

Threat hunting remains a relatively underdeveloped and vaguely
delineated concept in terms of both its procedures and its integra-
tion within organizational structures. Currently, the predominant ap-
proach in many organizations is to respond to alerts and incidents
reactively rather than adopting a proactive stance in identifying poten-
tial threats (Nour et al., 2023). Research highlights some compelling
points, notably the interdependence of threat intelligence and threat
hunting and its impact on effective performance, emphasizing the need
for more automation in these processes. Furthermore, these studies
indicate that organizations which incorporate tangible enhancements
to their security procedures typically observe improvements in terms of
speed and accuracy. Notably, the adoption of proactive threat hunting
practices has been linked to reduced exposure to security threats,
demonstrating its potential benefits.

2.1. Threat hunting versus anomaly detection

In the dynamic landscape of cybersecurity, the interplay between
offensive maneuvers and defensive strategies necessitates a continual
evolution of tactics and tools. Proactive measures in cybersecurity
are essential for defending against potential threats. Two primary ap-
proaches to detect and mitigate cyber risks are those of anomaly detec-
tion and threat hunting. While both methods contribute to enhancing the
security of the environment, they operate differently and serve distinct
purposes.

Anomaly detection is a largely automated technique used to iden-
tify deviations from normal behavior within a system or network. It
relies on statistical analysis, ML algorithms, and predefined thresh-
olds to flag activities or events that differ significantly from expected
patterns. This method can be effective for detecting subtle anomalies
that may go unnoticed by manual inspection, such as insider threats
or stealthy attacks that blend into legitimate system events. Anomaly



A. Mahboubi et al.

T
r
n
t

o
s
i

e
t
s
t
r

2

e
t
d
l
w
s
S
p
s
2

c
i
a
d
t
h
a
c
e

Journal of Network and Computer Applications 232 (2024) 104004 
detection can be both reactive, where it identifies deviations after they
occur, and proactive, where it establishes baselines of normal behavior
and alerts when deviations exceed predefined thresholds. Furthermore,
anomaly detection systems can adapt dynamically to evolving threats
by adjusting detection thresholds and models based on the changing
characteristics of the environment.

The semi-automated aspect of anomaly detection systems makes
them suitable for monitoring large volumes of data in real time. How-
ever, by this very fact, such systems may generate many false positives,
as legitimate activities that deviate from established patterns can also
trigger alerts. It is essential to tune thresholds and refine algorithms to
minimize false positives.

Threat hunting is a proactive cybersecurity strategy aimed at iden-
tifying and mitigating potential threats that may have bypassed tra-
ditional security measures. It involves searching through networks to
detect and isolate advanced threats that elude traditional defensive
mechanisms such as IDS, IPS, and firewalls. This process involves
extensive data analysis across various sources, including network traf-
fic, system logs, endpoint telemetry, and threat intelligence feeds, to
uncover malicious activities.

What distinguishes threat hunting is its reliance on the hypothesis-
driven exploration of threats, leveraging human intelligence and intu-
ition to anticipate and uncover sophisticated cyber attacks (Alevizos
and Dekker, 2024). This approach not only contributes to a deeper
understanding of adversarial tactics but also serves as a critical resource
for the continuous improvement of automated defense systems.

Anomaly detection, statistical analysis, ML, and other cybersecurity
technologies can all benefit significantly from the insights garnered
through threat hunting activities (Rashid et al., 2022). These technolo-
gies, while powerful in their right, depend on high-quality, relevant
data to effectively identify and mitigate threats. Threat hunters, by ana-
lyzing patterns of compromise within heterogeneous data sources (Sam-
tani et al., 2020), often uncover IoCs and TTPs of adversaries that have
successfully bypassed existing defensive measures. This intelligence is
invaluable for updating the configurations and algorithms of anomaly
detection systems and ML models, allowing them to adapt to the
evolving threat landscape more adeptly.

2.2. A systematic threat hunting process

The SANS Institute’s threat hunting maturity model categorizes
organizations into five levels based on their threat hunting capabilities,
namely:

Initial (Level 0) Reliance on automated reporting with little to no
routine data collection.

Minimal (Level 1) Incorporation of threat intelligence indicator
searches with moderate to high data collection.

Procedural (Level 2) Following analysis procedures created by
others with high to very high data collection.

Innovative (Level 3) Creating new data analysis procedures with
high to very high data collection.

Leading (Level 4) Automating successful data analysis procedures
with high to very high data collection.

From these categories we have derived a systematic, ten-step pro-
cess for threat hunting, as illustrated in Fig. 2 for an enterprise setting.

1. Ingestion of Heterogeneous Data Sources: This fundamental
phase involves the collection of data from diverse inputs, such as
data lakes, and system and network logs. This broad spectrum of
data sources is crucial for capturing the complex and varied nature of
cybersecurity threats, setting the stage for effective threat detection and
classification.

2. Formulation of Threat Definitions and Hypotheses: Under-
standing what constitutes a threat within a specific operational context
is critical. By generating hypotheses about potential threats, informed
by current trends, intelligence, and system vulnerabilities, organiza-
tions can engage in targeted threat hunting, laying the groundwork for

a nuanced classification of threats. a
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3. Proactive Threat Hunting: Armed with well-defined hypotheses,
the proactive search for indicators that align with these hypotheses
is undertaken. This stage is vital for intercepting threats before they
materialize, ensuring that subsequent classification is both timely and
relevant.

4. Employment of Threat Observation Techniques: Utilizing a
variety of analytical tools and techniques, such as data analysis and
anomaly detection, this phase facilitates the identification of anomalous
activities indicative of cybersecurity threats, preparing the ground for
their classification based on observed characteristics.

5. Classification of Identified Threats: Following identification,
threats are categorized into clusters according to their shared charac-
teristics, behaviors, or potential impacts. This classification not only
enhances the efficiency of analysis and response strategies but also
informs the refinement of threat definitions and hypotheses.

6. Human Validation of Threats: The role of human analysts is
pivotal in validating the classification of threats, ensuring that the
categorization accurately reflects the nature of the identified threats
and minimizing false positives. This human insight is crucial for the
reliable application of classification criteria.

7. Assessment Against Prevention and Detection Mechanisms:
he validated and classified threats are assessed against existing secu-
ity frameworks (e.g. IDS, IPS, and firewalls) to evaluate their effective-
ess and to identify any security gaps. This assessment is informed by
he detailed classification of threats, enabling targeted improvements.

8. Extraction of Threat Signatures and Patterns: Detailed analysis
f classified threats allows for the extraction of distinctive features,
ignatures, and behavioral patterns, enriching the dataset of threat
ndicators and enhancing future threat detection efforts.

9. Enhancement of Detection and Mitigation Frameworks: In-
corporating the latest threat intelligence, including APT tactics, MITRE
ATT&CK techniques, and STIX data, into defense mechanisms ensures
that the system’s protection measures are current and effective. The
classification of threats plays a critical role in identifying the specific
system updates required.

10. Iterative Enhancement Process: Acknowledging the ever-
volving nature of the threat landscape, this approach emphasizes
he importance of continually updating threat definitions, hypothe-
es, classification criteria, and mitigation strategies through an itera-
ive process, ensuring that cybersecurity measures remain robust and
esponsive.

.3. Augmented threat hunting methodologies

Cyber threat hunting methodologies have experienced significant
volution, transitioning from manual procedures to encompassing au-
omated techniques (Nour et al., 2023). Initially, threat hunting pre-
ominantly constituted a manual endeavor, where a security analyst,
everaging their extensive knowledge and comprehension of the net-
ork architecture and behavior, engaged in the analysis of various data

treams to construct hypotheses concerning potential cyber threats.
uch manual investigations typically involved the identification of
atterns indicative of lateral movements by threat actors, among other
ophisticated attack vectors obtained from OSCTI platforms (Gao et al.,
021a).

To augment the process of hunting threats (e.g. AI, cyber, and
omputer crimes — see Fig. 3), there has been a shift towards the
ntegration of automation and machine assistance for both attackers
nd defenders (Kaloudi and Li, 2020). This paradigm shift allows
efenders to leverage advanced algorithms and ML models to sift
hrough vast quantities of data at speeds and volumes unattainable by
uman analysts alone. The automated systems are designed to detect
nomalies, patterns, and IoCs that might suggest the presence of a
ybersecurity threat. However, attackers may also use AI technology-
nhanced learning methods, turning them into tools for automated

ttacks. The transition towards AI technologies that have the ability
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Fig. 2. Systematic process of adaptive threat hunting.
Fig. 3. The shift in computer crime towards ICT and AI technologies.

to learn, including ML, DL, reinforcement learning (RL), SVMs, and
genetic algorithms, brings with it unforeseen repercussions, notably
making criminal activities more streamlined and effective (Kaloudi and
Li, 2020).

Given the increasing complexity and intelligence of attacks, now
further driven by AI, the initial stages of threat hypothesis formu-
lation need to be meticulously crafted. The generic threat hunting
methodologies can be categorized as follows:

Analytics-Driven: This method involves coupling machine learning
with User and Entity Behavior Analytics (UEBA) to generate aggregated
risk scores, which can then be used as the basis for ranking hunting
hypotheses.

Situational-Awareness Driven: This approach includes analyzing
critical assets (Crown Jewel analysis), conducting enterprise risk assess-
ments, and identifying company- or employee-level trends.

Intelligence-Driven: This strategy utilizes threat intelligence re-
ports and feeds, malware analysis, and vulnerability scans to inform
the hunting process.

2.4. IBM threat hunting methodology

IBM (2023) recognizes three different threat hunting methodologies,
namely: structured; unstructured; and situational. Structured hunting is
6 
grounded in the detection of Indicators of Attack (IoA) and TTPs,
employing CTI frameworks like the Lockheed Martin Cyber Kill Chain
or the MITRE ATT&CK to anticipate and counteract threats (Straub,
2020). Conversely, unstructured hunting initiates from IoC, leading to
broad investigations to unearth pre- and post-detection activity pat-
terns without a predetermined framework. Finally, situational hunting,
or entity-driven hunting, integrates both structured and unstructured
elements based on internal analyses or trend observations, leveraging
crowd-sourced data and telemetry to disclose novel TTPs and latent
threats within organizational systems.

2.5. CrowdStrike threat hunting methodology

Drawing upon the methodologies espoused by cybersecurity leader
CrowdStrike (2023), proactive threat hunting is predicated based on
the hypothesis that adversaries may have already infiltrated the system,
necessitating a vigilant search for signs of unusual behavior that could
betray the presence of malicious activities. This vigilance is manifested
in three core investigative strategies:

(i) hypothesis-driven investigations, which leverage the wealth of
knowledge gained from crowdsourced attack data to unearth new
adversary TTPs, thereby guiding the search for these malicious patterns
within the organization’s own digital environment;

(ii) investigations anchored in known IoCs or IoAs, employing tac-
tical threat intelligence to spotlight IoCs and IoAs tied to emerging
threats as the springboard for unearthing covert attacks or ongoing
malevolent actions;

(iii) advanced analytics investigations that harness the formidable
power of data analysis and ML to parse through extensive data troves in
pursuit of anomalies that could indicate underlying threats with these
detected discrepancies serving as the impetus for further scrutiny by
adept analysts.

Emblematic of a harmonious blend of human acumen and cutting-
edge security technology, these strategies exemplify a proactive,
intelligence-led approach to securing organizational systems and data,
as championed by CrowdStrike.

2.6. Resources for intelligence ontologies, knowledge-bases, and automation
tools

In the realm of cybersecurity, the available tools, knowledge bases,
and platforms for automation have significantly evolved. We have
summarized some of the CTI concepts, platforms, and tools in Ta-
ble 1. In this section, we discuss various important milestones in the

development of publicly available tools and platforms.
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Table 1
Overview of cyber threat intelligence: Concepts, Platforms, and Tools.

Description

Concepts

Cyber Threat
Intelligence (CTI)

Information gathered and analyzed to understand and mitigate cyber threats.Tactics,
Techniques, and Procedures (TTP)

Tactics, Techniques,
and Procedures (TTP)

The behavior of threat actors, including their tactics (the why), techniques (the how),
and procedures (the specific way)

Launched Description Key Features

AlienVault
Unified Security
Management (USM)

2007 ∙ AlienVault is a comprehensive security
platform that combines multiple
essential security capabilities within one
console.
∙ Now a part of AT&T Cybersecurity, it
aims to simplify threat detection,
incident response, and compliance
management for IT teams of all sizes.

∙ The platform provides asset discovery,
vulnerability assessment, intrusion detection,
behavioral monitoring, and SIEM
∙ A threat exchange network that enables
collaborative
defense with community-sourced threat data
∙ Comes with built-in compliance reporting
templates that help
simplify meeting regulatory requirements.

Malware Information
Sharing Platform
(MISP)

2011 ∙ A platform for sharing threat
intelligence among communities.

∙ Community-driven development
∙ Swift exchange of information
∙ Integration with the STIX format

Platforms
and
Frameworks

MITRE ATT&CK 2016 ∙ A knowledge base of adversary tactics and
techniques.

∙ Catalogs tactics, and techniques, linked to
specific tools and actors
∙ Employs public sources
∙ Offers tools like Caldera, Caret, Car, ATT&CK
Navigator, and TramIntroduction of sub-techniques

Semi-Automated
Cyber Threat
Intelligence (ACT)

2017 ∙ Enhances capabilities for CTI
consumption, analysis,
enrichment, and sharing.

∙ Aims to balance the efficiency of automated
processes with the nuanced
understanding that human analysts bring
∙ Community-Driven Initiative
∙ Integration into organizations’ existing security
operations

OpenCTI 2019 ∙ Platform for analyzing, sharing,
and storing CTI

∙ Graph-based architecture
∙ Supports linked data
∙ Shares principles with the ACT project

Description

MISP and STIX Format ∙ MISP as an alternative and integrator to STIX for threat intelligence sharing.

MITRE ATT&CK and
Tactical CTI

∙ MITRE ATT&CK contributes to the practical application of CTI, focusing on tactics
and techniques.Relationships

ACT Project & OpenCTI ∙ Both projects aim at enhancing CTI capabilities but differ in architectural and
licensing approaches.

Features

Caldera ∙ Automated adversary emulation system; uses ATT&CK model to test defenses against known tactics,
techniques, and procedures. Enables identification of weaknesses in security postures.

Caret ∙ Provides capabilities for creating and managing analytic tests based on ATT&CK techniques.
It helps in the validation of detection capabilities and improvement of threat hunting processes.

Car ∙ Cyber Analytic Repository; a knowledge base of analytics developed to detect adversary behaviors described in
ATT&CK.
Focuses on translating ATT&CK techniques into implementable detection strategies.

Tools
Associated
with
MITRE
ATT&CK ATT&CK Navigator ∙ A web-based tool for visualizing and exploring the ATT&CK matrix; allows users to annotate and

customize their views on ATT&CK tactics and techniques.
Facilitates the planning of defenses and the identification of coverage gaps.

Tram ∙ Threat Report ATT&CK Mapping; automates the mapping of textual threat reports to ATT&CK techniques.
Aids in quickly associating threat reporting with the relevant ATT&CK framework components.
Initiated in 2011, the Malware Information Sharing Platform (MISP)
roject transformed into the MISP Threat Sharing Platform (Wagner
t al., 2016). This transformation underscores its progression into a
ommunity-driven initiative focused on the development of the plat-
orm and the sharing of threat intelligence. MISP, accessible on GitHub,
s renowned for its emphasis on the swift exchange of information.
ts structure, closely integrated with its platform, positions MISP as

viable alternative to the STIX format, although it also supports
xporting data to STIX.

The Structured Threat Information eXpression (STIX™), developed
y the OASIS CTI Technical Committee, serves as a pivotal language
nd serialization format for exchanging CTI among organizations. Its
ore is an ontology representing the domain’s concepts and their in-

errelations, which facilitates a shared understanding of, and actions
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against, cyber threats by encompassing objects like indicators, inci-
dents, and threat actors. Predominantly serialized in JSON for its com-
patibility and readability, STIX’s design is both expansive and adapt-
able, ensuring that the exchange of CTI remains consistent, machine-
readable, and evolves with the cyber threat landscape, thus enhancing
prevention and mitigation efforts.

Another milestone in the cybersecurity landscape was the publica-
tion of the MITRE ATT&CK framework in 2016. This online knowledge
base catalogs adversary tactics and techniques, linking them to specific
tools and threat actors based on empirical observations. The content is
curated by the ATT&CK team and relies exclusively on public sources.
MITRE further enhances the utility of this knowledge base by offering
a suite of tools, including Caldera, Caret, Car, ATT&CK Navigator,
and Tram. These tools empower users to leverage the extensive in-
formation contained in the ATT&CK framework. The introduction of

https://otx.alienvault.com
https://www.misp-project.org/
https://attack.mitre.org/
https://attack.mitre.org/
https://attack.mitre.org/
https://attack.mitre.org/
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https://github.com/OpenCTI-Platform/opencti
https://caldera.mitre.org/
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https://github.com/center-for-threat-informed-defense/tram
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sub-techniques and detailed procedures marks a significant advance-
ment in connecting practical indicators with broader strategic models,
paving the way for future research in tactical CTI (Wang et al., 2023).

The Semi-Automated Cyber Threat Intelligence (ACT) project (Bro-
mander et al., 2021), launched in 2017, represents another step for-
ward, offering capabilities for the consumption, analysis, enrichment,
and sharing of CTI. This initiative has been instrumental in the develop-
ment of the ACT platform. Following in 2019, OpenCTI was introduced,
embodying principles similar to those of the ACT project. OpenCTI
distinguishes itself with a graph-based architecture that facilitates the
robust querying and integration of diverse data sources, underpinned
by a data model that supports linked data. Notably, OpenCTI’s choice
of an open-source license marks a departure from the ACT platform’s
approach.

2.7. Threat hunting datasets

In this section, we introduce several well-known datasets frequently
utilized by researchers in the field of threat hunting.

Security datasets (AWS, Linux, Windows), led by the open threat re-
search forge (OTRF) community, are a vital platform for cybersecurity,
offering a vast collection of curated datasets aligned with the MITRE
ATT&CK framework, empowering professionals to refine detection and
response strategies. With an open-source approach, it fosters collabo-
ration, accelerates innovation, and democratizes access to resources.
Detailed documentation and use cases support users in navigating
dataset complexities, making it invaluable for training cybersecurity
professionals and students.

Mossé Cybersecurity Institute offers a GitHub repository of multiple
datasets specifically designed for practicing threat hunting for educa-
tional purposes. Answers to practical problems associated with the first
dataset are available to assist learners. The datasets aim to enable users
to determine which devices have been compromised, thereby offering
a practical approach to understanding and mitigating cyber threats.

Awesome-threat-detection is a curated GitHub repository, which in-
cludes a wide array of tools, configuration guides, network monitoring
resources, fingerprinting tools, and datasets for threat detection and
hunting. It features links to various datasets, including the Mordor
datasets which contain pre-recorded security events generated by simu-
lated adversarial techniques, and other resources like SecRepo.com and
the Boss of the SOC (BOTS) dataset versions 1–3, among others.

Awesome Threat Detection and Hunting library is a GitHub reposi-
tory maintained by the threat hunting community, and compiles a sig-
nificant list of resources related to threat detection, hunting, and intelli-
gence. It provides links to various threat hunting rule sets for SIEM plat-
forms like Splunk and ELK Stack, training documents, tools, datasets,
frameworks, and other resources. This collection is particularly useful
for those looking to dive deeper into the tools and methodologies
employed in threat hunting.

Real-CyberSecurity-Datasets is a GitHub repository compiling var-
ious cybersecurity datasets that can be utilized for different security
problems using ML and other methodologies. The datasets cover a
wide range of topics including botnet and ransomware detection, ma-
licious URLs, cloud security, and more, making it a rich resource for
cybersecurity enthusiasts and professionals looking to delve into data
analysis.

Awesome-Cybersecurity-Datasets is a curated GitHub repository in-
cluding a variety of cybersecurity datasets related to phishing, pass-
words, malware, network traffic, and more. It includes links to re-
sources like the Unified Host and Network Dataset, Comprehensive
Multi-Source Cyber-Security Events, and datasets from the Canadian
Institute for Cybersecurity, among others, making it an invaluable
resource for those looking to study or develop cybersecurity solutions
across a spectrum of challenges.

ARCS Datasets from Los Alamos National Laboratory is managed by

Triad National Security, LLC, for the U.S. Department of Energy’s
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NNSA. The ARCS datasets include comprehensive cybersecurity events,
unified host and network datasets, and user-computer authentication
associations over time. These datasets offer deep insights into the
behavior of users and networks within a high-security environment
and can serve as an excellent basis for developing and testing threat
detection models.

IoT datasets are valuable resources for cybersecurity research, de-
veloped and maintained by various academic and research institutions.
For instance, the IoT-23 Dataset and Aposemat IoT-IDS Dataset
are provided by the Stratosphere Laboratory at the Czech Technical
University (CTU), capturing network traffic from IoT devices to identify
attack patterns. The UNSW-NB15 Dataset and IoT Network Intru-
sion Dataset (TON_IoT) are provided by the Cyber Range Lab of the
Australian Centre for Cyber Security (ACCS) at the University of New
South Wales (UNSW), containing comprehensive network traffic data
including IoT devices for intrusion detection studies. Additionally, the
N-BaIoT Dataset was created by researchers at Ben-Gurion University
of the Negev, Israel, offering data on normal and botnet traffic from
various IoT devices. These datasets enable a comprehensive analysis to
understand IoT device behavior, identify vulnerabilities, and enhance
security measures for IoT deployments.

CICDarknet2020 (Habibi Lashkari et al., 2020) is curated by the
Canadian Institute for Cybersecurity (CIC). This dataset captures ex-
tensive network traffic from dark web sources, providing researchers
with valuable insights into illicit online activities and cyber threats.
CICDarknet2020 includes data such as forum posts, transaction records,
and other interactions within dark web environments. This enables the
study of emerging threats, criminal behaviors, and trends in cyber-
crime.

CIC-Bell-DNS-EXF-2021 dataset and CIC-Bell-DNS 2021 dataset are
two well-known DNS datasets, consist of DNS queries, responses, and
metadata collected from various sources. Collected and shared by the
collaboration between the Canadian Institute for Cybersecurity (CIC)
and Bell Canada, these DNS datasets can be used to analyze domain
resolution patterns and identify malicious domains as well as activities
such as DNS tunneling and domain generation algorithms (DGAs). They
can also be used to identify anomalies, track the spread of malware, and
enhance security measures to protect against DNS-based attacks.

IDS datasets is the group of Intrusion Detection Systems (IDS)
datasets that are collected and/or provided by the Canadian Institute.
They consist of various types of network attacks. For example, Realistic
IDS- DoS and spoofing attack in IoV (CICIoV2024) is a recent dataset
focused on Denial of Service (DoS) and spoofing attacks specifically
targeting the Internet of Vehicles (IoV). CICEV2023 DDoS attack is
a dataset on DDoS attacks. Intrusion detection evaluation dataset is
a comprehensive dataset covering various intrusion attacks, including
DDoS, perfect to be used for benchmarking IDS performance.

3. Hypothesis formulation

The initial step in a threat hunting program involves identifying its
overarching goal: What is the rationale for the hunt? This fundamental
question must be addressed by aligning the strategic plan with the
organization’s business objectives. The next critical step is to estab-
lish a hypothesis to guide the entire process. The central query for
hypothesis formation is: What specific threats are we targeting? Domain
knowledge is crucial for generating relevant hypotheses.

Therefore, this section comprehensively discusses the hypothesis
formulation to address research question RQ2. In threat hunting, de-
veloping a hypothesis is an integral part of the process that enables
cybersecurity professionals to proactively identify and mitigate poten-
tial threats before they can cause harm. A hypothesis in this context is
essentially an educated guess or theory that seeks to explain the pres-
ence of malicious activity within an organization’s network based on
available data, trends, and security intelligence. Here we present a for-
mal mathematical method for systematically approaching ransomware

cyber attacks.
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Consider, as an example, a ransomware attack which involves ini-
tial lateral movement within the network, then the identification and
exploitation of critical resources, culminating in data encryption and
a ransom request. Our goal is to formulate the substantial actions
to be considered in a threat hunting hypothesis to define a series of
mathematical expressions to represent the attacker’s behavior within a
network. The requisite steps in this modeling process are:

Attacker Model: We presuppose that the attacker has fixed at-
tributes and capabilities. Let 𝐴𝚎𝚡𝚙 represent the attacker’s general ca-
ability in exploiting a vulnerability. Likewise, let 𝐴𝚒𝚗𝚓, 𝐴𝚎𝚡𝚏 and 𝐴𝚎𝚗𝚌

enote the attacker’s capability of process injection, data exfiltration,
nd data encryption, respectively. The likelihood of a successful attack
ill depend upon these attributes.
Network Model: The computer network is represented as a graph

= ( , ), where  is the set of nodes or vertices (computers, servers,
tc.), and  is the set of edges representing communication paths.
Lateral Movement: Let  = {𝑝1, 𝑝2,… , 𝑝𝑛} be the set of paths

n attacker takes to perform lateral movement, where each 𝑝𝑖 =
(𝑣𝑖1, 𝑣𝑖2,… , 𝑣𝑖𝑚𝑖

) is a sequence of nodes representing a particular path
taken through the network. The probability of moving from node 𝑣𝑖 to
node 𝑣𝑖+1 is represented as 𝑃 (𝑣𝑖+1 ∣ 𝑣𝑖).

Learning Network Architectures: Define a knowledge matrix 𝐾 =
[𝐾𝑖𝑗 ] where 𝐾𝑖𝑗 represents the attacker’s knowledge about the connec-
tion between nodes 𝑣𝑖 and 𝑣𝑗 . Initially, 𝐾𝑖𝑗 = 0. As the attacker learns
about the network, 𝐾𝑖𝑗 increases, representing improved understand-
ing.

Stealth Maintenance: Let 𝑆(𝑣) ∈ [0, 1] be a stealth score for
node 𝑣, where a higher value indicates greater stealth. The attacker’s
actions decrease 𝑆(𝑣), making detection more likely. Define a detection
function 𝐷(𝑣) = 1 − 𝑆(𝑣), where a higher 𝐷(𝑣) means higher detection
risk.

Critical Resource Identification: Critical resources are nodes 𝑣 ∈
 ⊆  that are identified based on their network value 𝑁𝑣 and resource
value 𝑅𝑣. The identification function 𝐼(𝑣) combines these values, such
that 𝐼(𝑣) > 𝜃 indicates a critical resource for some predefined threshold
𝜃, i.e.  = {𝑐 ∈  ∣ 𝐼(𝑐) > 𝜃}.

Exploiting Vulnerabilities: For each critical resource 𝑐 ∈ 𝐶, the
exploitation probability is denoted as 𝐸(𝑐), which is a function of
the resource’s vulnerability score 𝑉 (𝑐) and the attacker’s exploitation
capability 𝐴𝚎𝚡𝚙.

Process Injection: Let 𝑃𝐼(𝑐) represent the success of process injec-
tion into critical resource 𝑐, where 𝑃𝐼(𝑐) = 𝐸(𝑐) ⋅ 𝐴𝚒𝚗𝚓, and 𝐴𝚒𝚗𝚓 is the
attacker’s process injection capability.

Data Exfiltration: Define 𝐸𝑋(𝑐) as the exfiltration function for
critical resource 𝑐, where 𝐸𝑋(𝑐) = 𝑃𝐼(𝑐) ⋅ 𝐴𝚎𝚡𝚏, with 𝐴𝚎𝚡𝚏 being the
attacker’s data exfiltration capability.

Data Encryption and Ransom Request: Finally, the encryption
and ransom request can be represented as a function 𝑅(𝑐) = 𝐸𝑋(𝑐)⋅𝐴𝚎𝚗𝚌,
where 𝐴𝚎𝚗𝚌 represents the attacker’s capability to encrypt data and
make a ransom request.

3.1. Hidden states and observations hypothesis

Collectively, the hidden state variables representing all attack stages
are given by:

( , 𝐾, ,, 𝐸, 𝑃 𝐼, 𝐸𝑋,𝑅) . (1)

This unstructured view may notionally be restructured into a set 𝑆 of
mutually exclusive hidden states that represent the possible distinct
stages of an attack. Our hypothesis is in what stages of attack threat
hunters can observe the hidden states of the possible attack; for such a
hypothesis we formulate the following notations:

Hidden states (attacker actions): 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑁}.
Observable effects/actions: 𝑂 = {𝜈1, 𝜈2,… , 𝜈𝑀}.
Observable effects are specific to each state, such as unusual net-

work traffic (for lateral movement), access pattern anomalies (for learn-

ing network architectures), etc.

9 
State transition probabilities: 𝐴 = {𝑎𝑖𝑗}, where 𝑎𝑖𝑗 = 𝑃 (𝑞𝑡+1 = 𝑠𝑗 ∣
𝑞𝑡 = 𝑠𝑖).

Transition probabilities capture the likelihood of moving from one
attack stage to another. These probabilities are crucial for understand-
ing the attacker’s progression through the network.

Observation probabilities: 𝐵 = {𝑏𝑗 (𝑘)}, where 𝑏𝑗 (𝑘) = 𝑃 (𝑜𝑡 = 𝜈𝑘 ∣
𝑞𝑡 = 𝑠𝑗 ) for continuous observations, often modeled with a probability
density function.

Given the continuous nature of network data, we use a probability
density function (e.g. Gaussian) to model the observation probabilities
with parameters specific to the observations related to each attack
stage.

Initial state distribution: 𝝅 = {𝜋𝑖}, where 𝜋𝑖 = 𝑃 (𝑞1 = 𝑠𝑖).
The initial state distribution reflects the likelihood of starting in a

particular attack stage. Typically, the initial stage would be ‘Lateral
Movement’.

The continuous HMM is represented by the tuple 𝜆 = (𝐴,𝐵,𝝅). The
objective is to compute the probability of a sequence of observations
⟨𝑜1, 𝑜2,… , 𝑜𝑇 ⟩ given the model 𝜆, which can be computed using the
forward algorithm for continuous observations.

Hypothesis on prediction and update. The prediction of the attacker’s
next step involves updating the state probabilities based on observed
actions using the forward–backward algorithm or Viterbi algorithm for
the most likely path of hidden states.

Forward algorithm (Continuous observations). Given a sequence of
observations ⟨𝑜1, 𝑜2,… , 𝑜𝑇 ⟩, the forward probability 𝛼𝑡(𝑖) is the joint
probability of the partial observation sequence up to time 𝑡 with state
𝑠𝑖 at time 𝑡, given the model 𝜆:

𝛼𝑡(𝑖) = 𝑃 (⟨𝑜1, 𝑜2,… , 𝑜𝑡], 𝑞𝑡 = 𝑠𝑖 ∣ 𝜆) (2)

For continuous observations, 𝑏𝑗 (𝑘) is typically defined by a prob-
ability density function, such as a Gaussian, which depends on the
parameters (e.g., mean, variance) associated with observation 𝜈𝑘 in
state 𝑠𝑗 .

The development of hypotheses is crucial in defining the scope
of threat hunting activities. In our analysis, we sought to map out
the potential behaviors of ransomware actors, from the initial stages
of discovery and lateral movements to the act of demanding ransom
from victims. For effective threat hunting, it is essential to establish
clear objectives, whether it involves identifying unknown threats or
leveraging known IoCs to track down specific threats. For instance,
the observation of processes transmitting frequent beacons (Abu Talib
et al., 2022) — whether through stochastic or deterministic behaviors
within an organization — serves as a key point of analysis. It is
important to recognize that not all beaconing activities are indicative
of malicious intent. However, this behavior can assist threat hunters or
incident response teams in classifying data within their playbooks as
either malicious or benign.

By systematically formulating and examining these behaviors and
employing a data-driven approach, we can enhance the precision of
threat detection and response.

3.2. Anomaly detection and threat hunting

Anomaly detection in the context of cybersecurity is crucial for
identifying patterns of behavior or network traffic that significantly de-
viate from the norm, signaling potential security breaches or malware
infections.

Feature Space: 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑛} represents the feature space,
where each 𝑥𝑖 represents a vector of features extracted from system or
network behavior, relevant to identifying potential cyber threats.

Normal Behavior Model: Define a model 𝑀 that represents the
normal behavior within the system, constructed using historical data

of the system’s operation. This model can be a statistical or machine
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learning model, such as a multivariate Gaussian model with mean 𝜇
nd covariance matrix 𝛴 estimated from the data.
Anomaly Score Function: An anomaly score function 𝑎(𝑥𝑖) quan-

ifies the deviation of a data point 𝑥𝑖 from the normal behavior model
. For a Gaussian model, the Mahalanobis distance can be used:

(𝑥𝑖) =
√

(𝑥𝑖 − 𝜇)𝑇𝛴−1(𝑥𝑖 − 𝜇) (3)

Threshold and Detection Rule: A threshold 𝜃 is defined to classify a
ata point as normal or anomalous. The detection rule is:

nomaly(𝑥𝑖) =
{

1 if 𝑎(𝑥𝑖) > 𝜃
0 otherwise

(4)

.3. Threat hunting indicator function

The indicator function 𝑡(𝑥𝑖) determines whether an anomaly 𝑥𝑖
arrants further investigation as a potential threat:

(𝑥𝑖) =

{

1 if 𝑐(𝑥𝑖) × 𝑎(𝑥𝑖) > 𝜏
0 otherwise

(5)

here 𝜏 is a threshold indicating the level of concern required to trigger
threat hunting investigation. This threshold is determined based on

he security posture and risk tolerance of the organization.
Defining a threshold for anomaly detection: In the context of

etecting ransomware cyberattacks via anomaly detection, the deter-
ination of the threshold 𝜏 is crucial for balancing sensitivity and

pecificity, aiming to minimize false negatives (missing actual attacks)
hile controlling false positives (misidentifying normal behavior as
ttacks). The threshold can be mathematically formalized as follows:

Given a collection of behavioral metrics 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑛) repre-
enting the normal operational state of a system and anomaly scores
= (𝑎(𝑥1), 𝑎(𝑥2),… , 𝑎(𝑥𝑛)) calculated from these metrics, the threshold
is defined to maximize the detection of ransomware activities without
verwhelming the system with false alarms.

The optimal threshold 𝜏∗ (offline learning data) can be defined as:
∗ = argmin

𝜏
{𝜇 ⋅ FPR(𝜏) + (1 − 𝜇) ⋅ [1 − TPR(𝜏)]} (6)

here
FPR(𝜏) is the false positive rate at threshold 𝜏, TPR(𝜏) is the true

ositive rate (sensitivity) at threshold 𝜏, and 𝜇 is a weighting factor
hat balances the cost of false positives against missing true positives
ransomware attacks), reflecting the criticality of the assets under
rotection and the operational impact of responding to false alarms.

.4. Iterative threat hunting and anomaly detection

The threat hunting process is iterative, with the results of investi-
ations 𝐼 feeding back into refining both the anomaly detection model

and the contextual analysis function 𝑐(𝑥𝑖):

𝑀 ′, 𝑐′) = 𝑓 (𝑀, 𝑐, 𝐼) (7)

here 𝑀 ′ and 𝑐′ are the updated model and contextual analysis func-
ion, respectively, and 𝑓 represents the update mechanism based on
nvestigative findings 𝐼 .

.5. Playbooks and threat detection

Hypotheses in threat hunting can lead to the identification of spe-
ific threat behaviors, attack vectors, or security vulnerabilities that an
rganization might face. This process involves analyzing potential or
merging threats and formulating assumptions about how these threats
ould manifest within an organization’s network. The development and
mplementation process of a collection of standardized procedures and
uidelines is known as a ‘‘playbook’’ (Schlette et al., 2023).

Playbooks have emerged as a cornerstone for enhancing organi-
ational defense mechanisms against cyber threats. A cybersecurity
 d
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laybook is essentially a comprehensive manual that delineates a step-
y-step approach for IT and security professionals to detect, respond to,
nd remediate various cyber threats and vulnerabilities. This manual
erves not only as a procedural guide but also as a strategic document
hat outlines the identification of signs of malicious activities, analysis
f potential threats, and the implementation of effective countermea-
ures to mitigate risks. The primary goal of these playbooks is to ensure
hat response teams can act swiftly and efficiently based on predefined
rotocols, tailored to address specific types of cyberattacks or security
ncidents. This systematic approach facilitates the standardization of
hreat response strategies, reduces response times, and, consequently,
mproves the overall security posture of organizations (Schlette et al.,
021a, 2023; Rizvi et al., 2022).

One of the most notable contributions to the cybersecurity do-
ain, specifically in the realm of threat hunting, is the ThreatHunter-
laybook, hosted on GitHub by the OTRF community (Rodriguez and
odriguez, 2022). It is an extensive collection of actionable intel-

igence and methodologies aimed at uncovering malicious activities
ithin network environments. The playbook meticulously outlines var-

ous techniques employed by adversaries, closely aligning with the
rinciples of the MITRE ATT&CK framework.

. Review of threat hunting approaches

In this section, we address research question RQ3 by conducting
systematic review and critical evaluation of the existing literature

oncerning threat hunting methodologies, with a particular emphasis
n approaches integrating ML techniques. The use of ML significantly
nhances cybersecurity, facilitating a more analytical and efficient
efense mechanism with less reliance on time and human effort. Data
lay a crucial role in making informed decisions and devising strate-
ic approaches that bolster the success of ML methods. Efforts to
ncorporate ML into threat hunting categorize solutions into five pri-
ary types: (i) Supervised Machine Learning ; (ii) Unsupervised Machine
earning (iii) Reasoning techniques; (iv) Graph-based approaches; (v) Rule-
ased approaches. Additionally, we examine other approaches such
s statistical methods and behavioral analytics, and their underlying
rinciples, techniques, and methodological frameworks (see Fig. 4). By
valuating these diverse strategies, our objective is to elucidate their
espective aims, the intricacies of their technical execution, and their
ffectiveness in identifying and mitigating cyber threats. Through this
omprehensive analysis, we seek to identify gaps in the current state
f research and suggest directions for future investigations, thereby
ontributing to the advancement of robust, intelligent Threat Hunting
aradigms.

.1. Supervised machine learning

Among the papers selected for our SLR, 19 of the selected papers
pply supervised machine learning to detect the threats shown in
able 2. This section reviews supervised machine learning-based tech-
iques for threat detection. In this section, we examine threat detection
echniques based on supervised machine learning. We examine the
ethod approach, the datasets used, as well as their strengths and
eaknesses.
OpCodes (HaddadPajouh et al., 2018): This study presents a deep-

earning-based approach for detecting malware in IoT devices, utilizing
deep recurrent neural etwork (RNN) framework with a focus on long

hort-term memory (LSTM) models. The methodology involves extract-
ng operation codes (OpCodes) from ARM-based IoT applications to
orm a dataset comprising both malware and benign software samples.
hrough an innovative feature selection process and the implementa-
ion of LSTM networks, the approach effectively analyzes the sequential
ata of OpCode patterns to identify malware activities.
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Fig. 4. Classification of threat hunting approaches.
The proposed system was trained and evaluated on a dataset of
281 malware and 270 benign samples, with further validation us-
ing 100 unseen malware samples. The findings reveal that a spe-
cific configuration of the LSTM model, characterized by a 2-layer
architecture, achieves an impressive 98.18% accuracy in detecting
new malware samples, significantly outperforming traditional machine
learning classifiers. This research marks a pivotal step towards enhanc-
ing IoT security through the application of deep learning techniques,
demonstrating the LSTM model’s superior capability in learning and
identifying complex malware behaviors from OpCode sequences.

The approach utilizes supervised learning, as it involves training the
LSTM model on a labeled dataset that includes both malware (negative)
and benign (positive) samples. Through the training process, the model
learns to distinguish between the patterns associated with malware and
those associated with benign software, allowing it to accurately classify
new, unseen samples.

DRTHIS (Homayoun et al., 2019): This paper introduces a deep
ransomware threat hunting and intelligence system (DRTHIS), specif-
ically designed for deployment at the fog computing layer. The term
‘‘fog computing’’ refers to a computing strategy designed to bring the
advantages of cloud computing closer to end-users and their IoT de-
vices (Costa et al., 2022). The DRTHIS system employs advanced deep
learning techniques, specifically LSTM and CNN, to offer a robust so-
lution for identifying and classifying ransomware threats. By analyzing
sequences of system actions and calls during the initial execution stages
of applications, DRTHIS effectively differentiates between malicious
ransomware and benign software. Furthermore, it precisely identi-
fies various ransomware families, ensuring high precision in threat
detection.

Tested on a comprehensive dataset, including 220 samples each
from major ransomware families such as Locky, Cerber, and TeslaCrypt,
alongside benign applications, DRTHIS achieved an impressive F-score
of 99.6% for ransomware detection and demonstrated capabilities in
recognizing previously unseen ransomware samples from new families.
This approach applies in the fog computing domain, employing super-
vised deep learning methods to process and learn from complex data
patterns inherent to ransomware behavior. Through the application of
LSTM networks, the system adeptly handles the sequential nature of
system call data, while CNNs contribute to extracting relevant features
crucial for classification tasks.

Long-term and short-term dependency data (Yazdinejad et al.,
2023): This study introduces a parallel ensemble machine learning
11 
model designed for accurate threat hunting in IIoT edge devices. By
integrating several state-of-the-art classifiers, including decision trees
(DTs), support vector machines (SVMs), logistic regression (LR), and
random forest (RF), the model adeptly classifies multi-class anomalies
through the synergistic use of multi-class AdaBoost and majority voting
mechanisms. This ensemble approach, characterized by its parallel
processing capabilities, significantly enhances the model’s efficiency
and accuracy in detecting anomalies across a diverse array of IIoT edge
devices.

The model was rigorously evaluated using two real-world IIoT
datasets, the Gas Pipeline (GP) and Secure Water Treatment (SWaT),
both characterized by their imbalanced nature and containing both
long-term and short-term dependency data. The findings demonstrate
remarkable performance, with the proposed model achieving detec-
tion accuracies of 99.3% and 99.7% on the GP and SWaT datasets,
respectively.

The core of the approach is not limited to conventional machine
learning techniques; instead, it exploits the combined strengths of mul-
tiple classifiers within an ensemble framework to address the challenges
of accurate anomaly detection in IIoT environments. This innovative
method represents a significant leap forward in securing IIoT edge
devices, offering a scalable and effective solution for the early detection
and classification of potential cyber threats. Through this research, the
authors contribute a valuable tool for enhancing the security posture of
IIoT systems, underscoring the critical importance of advanced machine
learning strategies in defending against the increasingly sophisticated
landscape of cyber threats.

While the focus of this paper focus is predominantly on leverag-
ing deep learning techniques for anomaly detection, its innovative
approach in addressing dataset imbalances and utilizing the LSTM
and AE architectures for learning and feature reduction underlines a
significant advancement in applying machine learning methodologies
to cybersecurity within the IIoT domain. The success of this model sets
a new benchmark for future research in the field of IIoT cybersecurity,
particularly in developing robust, efficient models for threat detection
and prevention.

ICS MITRE ATT&CK (Arafune et al., 2022a): This paper proposes
a novel framework aimed at enhancing the cybersecurity posture of
Industrial Control Systems (ICS) through automated threat hunting.
The methodology leverages the ICS MITRE ATT&CK framework to sys-

tematically identify and analyze TTPs utilized by adversaries, thereby
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Table 2
Supervised machine learning application in threat hunting.

Study Methods Datasets Approach uniqueness Limitations and future works

HaddadPajouh
et al. (2018)

Deep RNN with LSTM ARM-based IoT applications
dataset : includes 281 malware,
270 benign, 100 unseen malware
samples

Utilizes OpCode patterns from
ARM-based IoT applications for
malware activity identification

Dataset is small, method evaluation using
solely accuracy is insufficient and
unreliable.

Homayoun et al.
(2019)

LSTM and CNN Ransomware dataset : comprises
220 samples, including benign
applications and ransomware
from families such as Locky,
Cerber, TeslaCrypt, CryptoWall,
TorrentLocker, and Sage

Focuses on the fog computing
layer, employs advanced deep
learning for ransomware
detection and classification

A limited dataset was used in the study,
which may not represent real-world
scenarios. It focused on F-Measure and
lacked comparison with other models and
techniques.

Yazdinejad et al.
(2023)

DT, SVM, LR, RF,
Auto-encoder
architecture with
Multi-class AdaBoost
and majority voting

The datasets Gas Pipeline (274,628
samples) and Secure Water
Treatment (1,048,576 samples):
contain data collected from the
water treatment system,
actuators, and sensors, collected
in normal and attack situations

Addresses dataset imbalances
with an ensemble deep learning
model, combines LSTM and AE
for anomaly detection in IIoT
edge devices

Complexity and hyperparameter dependence
may restrict its practical deployment and
require considerable tuning.

Arafune et al.
(2022a)

Supervised ML with
SVM classifier, ICS
MITRE ATT&CK
framework

Sample datasets derived from
MITRE ATT&CK for ICS

Leverages ICS MITRE ATT&CK for
automated threat hunting,
emphasizes automated detection
and prediction of attacks

It relies on multiple technologies may
introduce implementation challenges and
require substantial maintenance.

Homayoun et al.
(2020)

Sequential pattern
mining, ML models
(J48, RF, Bagging,
MLP)

Ransomware dataset : 517 Locky,
535 Cerber, 572 TeslaCrypt
ransomware samples, 220 benign
applications

Employs sequential pattern
mining for ransomware detection
and classification, focusing on
system activity logs

The limited dataset size and focus on
specific ransomware families may hinder
the generalizability and long-term
effectiveness of the proposed method.

Aghamoham-
madpour et al.
(2023)

Attribute-based method,
DODAF integration

Not applicable Uses DODAF for designing a
threat hunting system in ICS,
focuses on architectural design
without specific ML models

Lacks real-world implementation or case
studies to demonstrate its practical
effectiveness. Qualitative evaluation based
on expert judgments may introduce bias
into the assessment process.

Yazdinejad et al.
(2022)

Federated learning with
various anomaly
detection algorithms

Synthetic data, use smart factory
applications

Utilizes federated learning for
decentralized anomaly detection
in IIoT, emphasizes privacy and
reduced bandwidth usage

Clustering algorithms, network
characteristics and data distribution
differences across clusters in federated
learning may introduce bias, impacting the
final performance.

Abdel-Basset
et al. (2022)

Multiscale convolutions,
GRU-based autoencoder

The ToN _IoT and LITNET2020
datasets: ToN_IoT contains labeled
IoT and IIoT data from 9 classes
of IoT traffic, and LITNET2020
contains 85 network flow features
corresponding to 12 attack types.

Combines multiscale convolutions
and GRU for cyber threat
detection in ICPS, deployed as a
microservice

Fails to exploit widely available unlabeled
data, differential privacy may negatively
impact performance, and the system
assumes all participants are trusted.

Farooq and
Otaibi (2018)

Various ML algorithms
(K-Means, DBSCAN,
BIRCH, OCSVM, RF)

Synthetic data Microsoft Sysmon
tool, focus on logs (Event ID: 1)
collected locally on multiple
enterprise hosts

Explores different ML techniques
for reducing false positives in
SOCs, focuses on specific
cybersecurity scenarios

Lacks dataset information such as size,
attack rate, and balance rate, essential for
evaluating ML models. It also misses
empirical validation with common metrics
like accuracy, precision, recall, and F1-score
for each model.

Bibi et al. (2023) ConvLSTM2D model Dataset with 21 million instances
of attack patterns and threat
vectors

Uses ConvLSTM2D for detecting
multi-vector IIoT threats,
emphasizes CUDA for efficient
data processing

The computational complexity and the
trade-off between detection accuracy and
speed efficiency.

Shin et al.
(2021)

NLP and supervised ML
techniques

Real-world data from Twitter Automates malware IOC
extraction from tweets, employs
NLP and ML for early threat
detection

Potential data poisoning attacks; the
proposed method is susceptible to false
information being introduced intentionally.

Li et al. (2023a) Transformer models,
bi-directional LSTM

Open-source datasets (HDFS,
OpenStack, PageRank, BGL logs)

Combines transformer models and
bi-directional LSTM for detecting
APT sequences and predicting
attack paths

It incurs higher computational costs,
particularly due to the use of transformer
and bi-directional LSTM models. This can
result in higher runtime overheads, making
the method less efficient in real-time
scenarios where quick detection and
response are crucial.

(continued on next page)
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Table 2 (continued).
Study Methods Datasets Approach uniqueness Limitations and future works

Jahromi
et al.
(2020)

Stacked LSTM with
pre-training regularization

Datasets with Windows
Ransomware, IoT malware,
and Android malware samples

Modifies stacked LSTM to avoid
random initialization, focuses on
rapid and accurate malware
detection

Its reliance on careful tuning can involve
significant experimentation, which may hinder the
method’s scalability and practicality.

Janjua
et al.
(2020)

AdaBoost, NB, LR, KNN, SVM TWOS dataset Analyzes email communications
to detect insider threats,
highlights the effectiveness of
AdaBoost

The small size of the data presents a limitation,
potentially affecting the generalizability and
robustness of the results.

Pal
et al.
(2023)

LSTM and GRU with
attention, ensemble techniques

CMU CERT insider threat
datasets

Employs deep learning with
attention mechanism for detecting
insider threats, uses ensemble for
classification

The method could miss detecting longer-term
threats due to training the underlying model with
single-day activity sequences.

Alsaheel
et al.
(2021)

Causality analysis, NLP,
sequence-based ML

Dataset from executing ten
real-world APT attacks

Automates construction of attack
narratives from system audit logs,
leverages causality analysis and
ML

The method may miss attacks that mimic normal
behavior patterns.

Kumar
et al.
(2023)

LSTM-VAE, Bi-GRU with
sigmoid and softmax functions

ON_IoT datasets Combines LSTM-VAE for feature
extraction and Bi-GRU for
detection and identification in
maritime transportation systems,
achieving up to 99% accuracy

The method uses LSTM-VAE and Bi-GRU-based
schemes, requiring significant computational
resources.

Shen
and
Stringh-
ini
(2019)

Cosine Similarity based as the
distance metric to quantify the
temporal embedding changes
at time 𝑡 in the latent space

Collected by authors., 190
million security events
collected from tens of millions
unique machines per day (102
consecutive weeks of data
between December 1, 2016,
and November 08, 2018)

Build an appropriate word
embedding to effectively model
and monitor the evolution of
cyber attack events

The method relies a dataset of pre-labeled security
events, which can result in missing unknown
attacks such as zero-day vulnerability-based
attacks.

Hem-
berg
et al.
(2024)

BERT BRON dataset contains
hundreds of thousands of
nodes from D3FEND, CAR,
Engage, ATT&CK, CAPEC,
CWE

It demonstrates the utility of the
enhanced BRON graph for
hypothesis-driven cyber hunting
and machine learning-enhanced
simulations. The model leverages
new data sources and machine
learning to infer novel
relationships, improving cyber
defense strategies.

Limitations include data quality and bias, dynamic
data nature, and constraints in the machine
learning methodology, which require further
refinement.

Liu
et al.
(2022)

Transformer embedding
approach

1800 threat reports collected
from Unit42, AlientVault

By adopting a Transformer-based
architecture, ATHRNN enhances
the semantic representations of
threat reports, achieving
state-of-the-art performance in
extracting techniques. However,
limitations include the
incompleteness of the ATT&CK
framework and the coarse
granularity of extracted
techniques.

Future work will focus on refining the ATT&CK
set, extracting sub-techniques, and integrating
regularization to improve hierarchical extraction.
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automating the generation and validation of hypotheses regarding po-
tential cyber threats. The framework comprises two principal compo-
nents. The first involves the automatic detection of adversarial TTPs
through a centralized threat hunting platform, which interfaces with
the MITRE ATT&CK framework to discern potential threats based on
observed network activities. The second component utilizes a super-
vised machine learning approach to predict future attack strategies,
enabling proactive countermeasures.

Key results demonstrate the framework’s capability to accurately
identify network attacks, generate insightful hypotheses for threat
hunters based on TTPs, and employ a machine learning classifier to
foresee attackers’ next moves. Through the creation of a detailed proof-
of-concept, including sample datasets derived from the MITRE ATT&CK
for ICS, the paper showcases the system’s efficacy in real-world attack
scenarios.

While the study heavily emphasizes the use of a supervised machine
learning model, particularly an SVM classifier, for the prediction of
future attack behaviors, it is equally rooted in the automation of the
threat hunting process itself. The approach systematically organizes
threat intelligence and employs algorithmic analysis to automatically
detect and respond to cyber threats, significantly reducing reliance
 i
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on human intervention and minimizing human error. This automated
mechanism, independent of the machine learning aspect, constitutes
a significant portion of the research, showcasing an innovative blend
of cybersecurity frameworks and algorithmic processing to fortify ICS
networks against sophisticated cyber threats.

Sequential pattern mining (Homayoun et al., 2020): This study
resents an approach to ransomware detection and classification using
equential pattern mining techniques. Focusing on the analysis of sys-
em activity logs, the study identifies maximal frequent patterns (MFPs)
ithin logs of known ransomware families, such as Locky, Cerber,
nd TeslaCrypt, alongside benign applications. These patterns serve
s distinct features that are leveraged in machine learning models for
fficient classification. The dataset consists of 517 Locky, 535 Cerber,
nd 572 TeslaCrypt ransomware samples, and 220 benign applications,
acilitating a comprehensive analysis. By applying sequential pattern
ining to extract meaningful patterns and using machine learning

lgorithms, including J48, Random Forest, Bagging, and MLP, the study
chieves a remarkable 99% accuracy in distinguishing ransomware
rom benign software and 96.5% accuracy in classifying ransomware
nto specific families.
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The core approach of this research is not solely reliant on con-
ventional machine learning techniques but significantly incorporates
sequential pattern mining to discover and utilize MFPs as features for
classification.

D3FEND (Aghamohammadpour et al., 2023): This paper introduces
a novel architecture for developing automated threat hunting systems
within ICS using the Department of Defense Architecture Framework
(DoDAF). This research leverages DoDAF to systematically design a
threat hunting system that addresses the complex cybersecurity chal-
lenges inherent in ICS. By integrating MITRE’s ATT&CK and D3FEND
frameworks, the proposed architecture enhances its capability to detect,
analyze, and mitigate cyber threats more effectively. The approach
focuses on creating an attribute-based method to categorize and un-
derstand malicious threats by analyzing similarities between suspicious
and known malicious events.

A significant part of the research involved evaluating the system’s
architecture using twelve essential quality attributes. This evaluation
was conducted through a survey questionnaire approach, gathering
insights from cybersecurity experts to assess the impact of these at-
tributes on the development and effectiveness of the threat hunting
process. Although the study does not directly employ machine learning
methods within the architecture, it suggests an analytical approach
to comparing threat categories and enhancing the understanding of
cyber threats in ICS environments. The absence of a specific dataset
for training or evaluating machine learning models highlights that
the paper’s primary contribution is towards the strategic architectural
design and qualitative evaluation of a threat hunting system.

Block Hunter (Yazdinejad et al., 2022): This paper introduces
the Block Hunter framework, designed to fortify cyber threat detec-
tion within the IIoT networks leveraging blockchain technology. The
core framework lies in employing federated learning (FL) to estab-
lish a decentralized anomaly detection mechanism that enhances pri-
vacy preservation and reduces bandwidth usage without centralizing
data. Block Hunter’s architecture is distinguished by its cluster-based
approach, facilitating efficient anomaly detection through collabora-
tive learning among various machine learning models in a federated
environment.

This setup not only aims to identify anomalous behavior with high
accuracy but also addresses critical challenges such as training data
scarcity and privacy concerns that are prevalent in IIoT applications.
Although the research emphasizes federated learning as its primary
approach, it acknowledges the integration of various anomaly detec-
tion algorithms, including clustering-based, statistical, subspace-based,
classifier-based, and tree-based methods, to bolster the efficacy of the
Block Hunter framework.

Fed-TH (Abdel-Basset et al., 2022): This study develops the feder-
ated threat-hunting (Fed-TH) deep learning framework optimized for
detecting cyber threats in industrial cyber–physical systems (ICPS).
Fed-TH integrates two key models: multiscale convolutions for cap-
turing spatial data features; and a gated recurrent unit (GRU)-based
autoencoder for temporal data analysis. This combination enables the
framework to effectively process and analyze the complex data patterns
inherent in ICPS, facilitating accurate threat detection.

Deployed as a microservice on edge servers within a container-based
edge computing architecture, Fed-TH leverages federated learning to
decentralize data processing, thereby enhancing privacy and reducing
latency by eliminating the need to transmit sensitive data over the
network. The effectiveness of Fed-TH is demonstrated through its appli-
cation to two public benchmarks, where it achieved notable accuracy
and F1 scores. By utilizing a federated learning approach, Fed-TH
addresses key issues related to data privacy, latency, and computa-
tional resource optimization in the cybersecurity domain for ICPS. The
deployment strategy, emphasizing microservice architecture on edge
servers, underscores the practical applicability and scalability of this
solution in industrial settings.
 o
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SOCs (Farooq and Otaibi, 2018): This paper delves into the crit-
ical evaluation and application of various ML algorithms to enhance
threat detection capabilities within security operations centers (SOCs).
Addressing the prevalent issue of high false-positive rates in cyber
threat detection, the study systematically explores the use of different
ML techniques, including clustering algorithms (K-Means, DBSCAN,
BIRCH), One-Class SVM (OCSVM) for anomaly detection, and random
forest for message classification, to analyze security logs and detect
potential threats more accurately. The approach taken involves apply-
ing these ML algorithms to specific cybersecurity scenarios, such as
analyzing internet traffic data for abnormal patterns, detecting anoma-
lous process executions within Windows environments, and classifying
enterprise mobile messaging data.

This methodological application aims to identify the most effective
algorithms for reducing false positives and improving the overall effi-
ciency of SOC operations. The study does not provide detailed empirical
results nor does it list the specific datasets used but it implies the
analysis of varied data relevant to each cyber threat detection scenario.
The selection of algorithms is guided by their potential to model the
data effectively and reduce false positives, showcasing the practical
implications of ML in enhancing cyber threat detection capabilities.

2D Convolutional LSTM (Bibi et al., 2023): This study introduces
n innovative approach for enhancing cybersecurity in distributed IIoT
nvironments. Leveraging a 2D Convolutional LSTM (ConvLSTM2D)
odel, the study proposes a scalable and self-optimizing mechanism

apable of addressing the dynamic and sophisticated nature of emerg-
ng threats in IIoT systems. This deep-learning-based solution utilizes
he compute-unified device architecture (CUDA) to efficiently process
patial and temporal data, making it particularly effective against
ulti-vector IIoT threats.

The ConvLSTM2D model’s performance was rigorously evaluated
sing a comprehensive dataset comprising 21 million instances of
arious attack patterns and threat vectors relevant to IIoT systems. The
ataset included categories such as man-in-the-middle (MitM) attacks,
enial of service (DoS), botnet malware, and reconnaissance activities.
he results demonstrate the ConvLSTM2D model’s superior detection
ccuracy compared to contemporary deep learning architectures and
enchmark algorithms, although it presents a trade-off in terms of
rocessing speed. Employing supervised learning techniques, the Con-
LSTM2D model successfully classifies and identifies diverse cyber
hreats in IIoT environments.
#Twiti (Shin et al., 2021): This paper unveils a system designed

o harness the power of social media, specifically Twitter, for CTI by
utomatically extracting malware IOCs from tweets. Employing a com-
ination of natural language processing (NLP) and supervised machine
earning techniques, Twiti identifies and classifies tweets potentially
ontaining valuable IOC information, then meticulously extracts and
rganizes these IOCs from both the tweets and their linked content.
he methodology encompasses a system that begins with collecting
weets based on cybersecurity-related keywords and user tracking,
ollowed by a relevant tweet selection process using a sophisticated
weet classifier to filter out irrelevant information. Finally, the IOC
xtractor component employs pattern matching to identify and extract
he IOCs, even handling defanged IOCs to ensure the integrity of the
ata collected.

Twiti’s performance was evaluated using real-world data, demon-
trating a high volume of accurate IOC extractions that surpassed ex-
sting threat intelligence systems in both precision and the uniqueness
f the collected IOCs. Notably, Twiti managed to detect a significant
ortion of IOCs earlier than other public threat intelligence feeds,
ighlighting its potential for early threat detection and contribution to
roactive cybersecurity measures.
DeepAG (Li et al., 2023a): This study introduces an innovative

ttack-graph framework designed for advanced threat detection and
redictive analysis in cybersecurity. Leveraging the robust capabilities

f transformer models and bi-directional LSTM (BiLSTM) networks,
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DeepAG analyzes system logs to detect APT sequences and predict po-
tential attack paths with exceptional accuracy. This dual approach not
only enhances the detection of malicious activities but also aids in the
proactive identification of future threats by constructing visual attack
graphs that represent possible attack strategies. DeepAG’s methodol-
ogy is distinguished by its use of transformer models to semantically
analyze log sequences, transforming them into vectors for parallel
processing. This reduces semantic information loss and the time costs
associated with threat detection. Additionally, the framework employs
a BiLSTM network that surpasses traditional approaches by efficiently
locating anomaly points within system logs, thereby improving the
accuracy of attack point confirmation.

Evaluated on open-source datasets comprising various system logs,
DeepAG demonstrates a remarkable ability to accurately detect over
99% of more than 15,000 sequences, significantly outperforming base-
line models. The bi-directional predictive model further enhances the
framework’s efficacy by improving baseline accuracy by 11.166% in
threat location, showcasing DeepAG’s potential in both detecting exist-
ing threats and predicting future attack paths. The experiments were
conducted using open-source datasets of four different system logs:
HDFS; OpenStack; PageRank; and BGL logs. These datasets comprise
a variety of system logs that are used to evaluate the effectiveness of
DeepAG in detecting APT sequences and predicting potential attack
paths.

Capturing global and short-term dependencies (Jahromi et al.,
2020): This paper introduces an innovative deep learning approach
tailored to enhancing malware detection in cybersecurity applications.
The study focuses on deploying an advanced, stacked LSTM network,
uniquely modified to bypass the challenges associated with random
initialization through a pre-training regularization method. This novel
approach aims to capture both global and short-term dependencies in
the data more effectively, crucial for identifying malware in safety
and time-critical systems such as healthcare devices and military IoT
applications. The methodology centers on utilizing the network for
analyzing malware OpCode sequences, with a special emphasis on pre-
training the model to ensure a more structured and informed learning
process. This technique addresses the key challenge of achieving rapid
and accurate malware detection without the computational overhead
typically associated with deep recurrent neural networks.

The evaluation of the proposed method, conducted on datasets
comprising Windows Ransomware, IoT malware, and Android malware
samples, demonstrates a significant improvement in malware detection
capabilities. The method achieved a remarkable detection accuracy of
99.1% for IoT malware samples, alongside an Area Under the Curve
(AUC) of 0.985 and a Matthews Correlation Coefficient (MCC) of
0.95. These results underscore the efficacy of the proposed LSTM net-
work modification over traditional methods, highlighting its potential
to enhance the robustness and reliability of cyber threat detection
systems.

TWOS (Janjua et al., 2020): This study investigates the efficacy of
supervised ML algorithms in detecting potential insider threats within
an organization, focusing on the analysis of email communications.
Utilizing the TWOS dataset, which contains behavior traces of 24
users over five days, the research applies a range of machine learning
algorithms — AdaBoost, naive Bayes (NB), logistic regression (LR), K-
nearest neighbors (KNN), linear regression (LR), and SVM — to classify
emails into normal and anomalous categories based on linguistic analy-
sis. The approach involves preprocessing email logs through stemming,
stop word removal, and tokenization, followed by the application of the
aforementioned algorithms to identify potentially malicious emails.

Of the algorithms tested, AdaBoost emerged as the most effective,
achieving a notable 98.3% accuracy rate and an AUC of 0.983 for the
identification of malicious emails. This result highlights the superior
performance of AdaBoost in classifying emails accurately and under-
scores the potential of supervised learning techniques in addressing

the challenge of insider threats. The paper emphasizes the advantages c
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of supervised learning in dealing with evolving threat concepts and
identifying insider threats with limited labeled data.

CMU CERT insider threat (Pal et al., 2023): This paper introduces
n ML-based approach to detect insider threats by analyzing user activ-
ty logs. Leveraging an ensemble of deep learning models, specifically
tacked LSTM and GRU networks equipped with an attention mecha-
ism, this method efficiently processes sequential daily user activities to
dentify potential insider threats. The approach is designed to highlight
ritical behavioral patterns and address the challenge of data imbalance
n insider threat detection datasets. The methodology involves prepro-
essing the Carnegie Mellon University (CMU) computer emergency
esponse team (CERT) insider threat dataset to generate single-day
ctivity sequences, transforming these sequences into detailed action
Ds, and implementing an equally weighted random sampling strategy
o mitigate data imbalance.

The core of the detection framework employs LSTM and GRU mod-
ls with attention layers to extract meaningful temporal features from
ctivity logs, emphasizing segments indicative of malicious behavior.
hese features are then classified using ensemble techniques, combin-

ng AdaBoost and random forest classifiers for the final threat detection.
he experimental evaluation on the CMU CERT insider threat datasets
versions 4.2, 5.2, and 6.2) demonstrates the approach’s high efficacy,
chieving an average AUC of 0.99 for versions 4.2 and 5.2, and 0.97
or version 6.2.
ATLAS (Alsaheel et al., 2021): This study introduces an innovative

ramework designed to automate the construction of attack narra-
ives from system audit logs. By leveraging a novel combination of
ausality analysis, NLP, and sequence-based machine learning tech-
iques, ATLAS effectively processes and analyzes system logs to identify
nd reconstruct the sequence of events that constitute a cyber at-
ack. ATLAS operates through a three-phase approach: constructing

causal dependency graph from audit logs; generating timestamp-
rdered event sequences representing attack and non-attack activities;
nd employing a sequence-based model to discern attack patterns
ithin these sequences. This methodology enables the system to ab-

tract complex attack behaviors into manageable sequences, facilitating
he identification of critical attack steps and entities involved in the
ncident.

The evaluation of ATLAS involved executing ten real-world APT
ttacks in a controlled virtual environment, resulting in a dataset rich
ith both attack and non-attack activities. The system demonstrated
igh accuracy in recovering attack steps and constructing coherent
ttack narratives, achieving an average precision of 91.06%, recall of
7.29%, and an F1-score of 93.76%.
DLTIF (Kumar et al., 2023) This paper introduces the deep learning-

riven cyber-threat intelligence modeling and identification framework
DLTIF) in IoT-enabled Maritime Transportation Systems (MTS). This
ramework aims to model CTI and identify specific threat types using
eep learning techniques. DLTIF consists of three primary components:
deep feature extractor (DFE); a CTI-driven detection (CTIDD) scheme;
nd a CTI-attack type identification (CTIATI) scheme. The DFE scheme
everages an LSTM-based variational autoencoder (LSTM-VAE) to auto-
atically extract latent threat patterns from network data. The CTIDD

cheme, which utilizes a bi-directional GRU (Bi-GRU) combined with
sigmoid function, uses the output from the DFE scheme for threat

etection. Finally, the CTIATI scheme is designed to identify the exact
hreat types using a Bi-GRU combined with a softmax function.

The framework was evaluated against five public datasets and
emonstrated superior performance over seven state-of-the-art host
ntrusion detection systems. DLTIF achieved up to 99% accuracy,
utperforming traditional and recent state-of-the-art approaches. The
se of deep learning, specifically the combination of LSTM-VAE for
eature extraction and Bi-GRU for detection and identification, enables
LTIF to effectively deal with the dynamic and sophisticated nature of

yber threats in IoT-enabled MTS.
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ATTACK2VEC (Shen and Stringhini, 2019): This study presents
an approach to analyzing the progression and transformation of cy-
berattacks over time. By employing temporal word embeddings, a
technique inspired by NLP, the system with cosine similarity, dubbed
ATTACK2VEC, transforms the landscape of cybersecurity event analy-
sis. This method conceptualizes attack steps as ‘words’ and sequences
of attacks as ‘sentences’, enabling a novel analysis of how these attack
steps coalesce and evolve, akin to tracking changes in language usage
over time.

The study leverages an extensive dataset comprising more than 190
million security alerts collected from a commercial intrusion prevention
system (IPS) that spans two years. This datasets encapsulates a broad
spectrum of security events, from routine port scans to specific ex-
ploitations of vulnerabilities identified by common vulnerabilities and
exposures (CVEs), observed across tens of millions of unique machines.

Through ATTACK2VEC, the authors demonstrate the system’s ca-
pability to monitor the emergence of new attack strategies and the
associations between various attack steps, shedding light on the attack-
ers’ evolving tactics. In particular, the system successfully flagged the
rise of a Mirai botnet variant targeting specific CVEs well before its
formal identification within the cybersecurity community.

BRON (Hemberg et al., 2024): This novelty framework aims to
use a transformer model which is a bidirectional relational knowledge
from additional data sources. It demonstrates the utility of the en-
hanced BRON graph for hypothesis-driven cyber hunting and machine
learning-enhanced simulations. The model leverages new data sources
and machine learning to infer novel relationships, improving cyber
defense strategies. Limitations include data quality and bias, dynamic
data nature, and constraints in the machine learning methodology,
which require further refinement.

ATHRNN (Liu et al., 2022): The study introduces the ATHRNN
framework, which incorporates hierarchical dependencies and seman-
tic information in ATT&CK extraction by encoding labels into matri-
ces to learn relationships among reports and labels. By adopting a
Transformer-based architecture, ATHRNN enhances the semantic rep-
resentations of threat reports, achieving state-of-the-art performance in
extracting techniques. However, limitations include the incompleteness
of the ATT&CK framework and the coarse granularity of extracted tech-
niques. Future work will focus on refining the ATT&CK set, extracting
sub-techniques, and integrating regularization to improve hierarchical
extraction.

LLM (Chang et al., 2023): The authors highlight the evolving role
of large language models (LLMs) in semantic understanding, demon-
strating their capabilities in interpreting language and its concepts,
yet with limitations in perceiving semantic similarities among events.
The survey found LLMs to be proficient in reasoning about causal and
intentional relations and predicting future events with adequate con-
text, but less effective in other relational types. Despite improvements,
LLMs like GPT-4 still lag behind human performance in distinguishing
meaningful phrases from nonsense, underscoring the need for further
enhancement in semantic processing. Consequently, the improvement
and optimization of LLMs in reasoning capabilities have significant
implications for enhancing threat detection systems. By addressing limi-
tations in abstract, multi-step, and domain-specific reasoning, LLMs can
better identify and predict potential security threats in various contexts.
Ongoing research to refine these models contributes to developing
more sophisticated and accurate cybersecurity tools, improving the
detection of complex cyber threats, and supporting more robust defense
mechanisms against evolving digital vulnerabilities.

4.2. Unsupervised machine learning

This section reviews unsupervised machine learning-based tech-
niques for threat detection as shown in Table 3. We divide them into
three subgroups of techniques: (i) anomaly detection; (ii) clustering;

(iii) topic modeling and unsupervised multi-phase models. t
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Anomaly detection approaches. Anomaly detection is a key technique
in discovering unusual patterns, behaviors, or activities that diverge
from established norms within a system or network. Since anomaly
detection is intrinsically aligned with cyber threat detection, it plays
a crucial role in detecting and enhancing the effectiveness of the threat
detection landscape. Therefore, various methods and techniques have
been meticulously developed and explored to maximize its potential.

LogAnomaly (Meng et al., 2019): The study is designed to represent
log stream as natural language sequences and then into log templates.

t incorporates two phases: offline training and online detection. Utiliz-
ng LSTM networks, LogAnomaly learns from observed log sequences in
he offline training phase. Logs that diverge significantly from predicted
atterns, indicating unexpected behavior, are identified as anomalies
uring online detection.
LogUAD (Wang et al., 2022b): The model employs Word2Vec

or log-based unsupervised anomaly detection. Before entering the
nomaly detection algorithm, original log messages are transformed
nto Word2Vec vectors. The anomaly detection process uses K-means
lustering along with predetermined thresholds.
Autoencoders & anomaly (Farzad and Gulliver, 2020): The model

everages isolation forest with two deep autoencoder networks for log
essage anomaly detection. While autoencoders manage training and

eature extraction, isolation forest serves as the anomaly detection
ethod for identifying unusual samples.

lustering approaches. As a threat-hunting technique, clustering is used
o find patterns, anomalies, or groups of similar entities in various types
f datasets, such as network traffic, log files, or file characteristics.
LogCluster (Lin et al., 2016): The research creates log sequences

nd clusters them using agglomerative hierarchical clustering. Subse-
uently, representative log sequences from each cluster are extracted
or further analysis. A knowledge base is consulted to determine if these
og sequences have been observed previously and to identify potentially
alicious logs. Any unseen log sequences are also manually examined

o ensure they contain no threats.
LogKernel (Li et al., 2022b): The three-phase model follows the

onstruction of a behavior provenance graph with graph kernel cluster-
ng. In the next step, the clustering results are assessed, and the most
uspicious clusters are selected based on a threshold score. The threat
core of each cluster is derived from a threat quantification formula that
onsiders IP addresses, URLs, user activities, and sensitive information.

While some studies have employed straightforward clustering
ethodologies such as K-means or DBScan to cluster network event

ogs (Sharma and Parvat, 2013), to detect DDoS attacks (Al-mamory
nd Algelal, 2017), or to detect malware based on file attributes (Rosli
t al., 2019), the evolving threat landscape requires more sophisti-
ated methods. Advanced threat models necessitate adopting intricate
echniques or multi-phase methodologies to ensure resilience against
merging and adaptive threats.

opic modeling approaches. Topic modeling has also been used as a
aluable tool in threat hunting for identifying patterns, themes, and
nomalies within large volumes of textual data such as security logs,
vent logs, and incident reports.
CD-LDA (Satpathi et al., 2019): The study addresses the challenge of

ategorizing error messages from large distributed data center networks
nto distinct error events. This method leverages a unique approach to
ransform error events into episodes, treating them as documents in

document-term matrix. This transformation is achieved using non-
arametric change-point detection techniques. Once the episodes are
apped to the document-term space, the latent dirichlet allocation

LDA) algorithm is employed for topic discovery. LDA helps in identify-
ng underlying themes or topics within the error messages, facilitating
he separation and classification of error events based on their shared
haracteristics.

Adams et al. (2018): The study introduces an automated approach

o rank attack patterns within the common attack pattern enumeration
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Table 3
Unsupervised machine learning application in threat hunting.

Study Methods Datasets Approach uniqueness Limitations and future works

Meng et al.
(2019)

Anomaly detection by NLP,
LSTM

BGL dataset (4,747,963 logs) and
HDFS dataset (11,175,629 logs)
(Oliner and Stearley, 2007)

The model learns from observed
log sequences in the offline
training phase

There is a challenge in accurately
approximating previously unseen logs due
to the use of FT-Tree algorithm.

Wang et al.
(2022b)

Anomaly detection by
Word2Vec and K-means
clustering

BGL dataset (4,747,963 logs)
(Oliner and Stearley, 2007)

Original messages are vectorized
before using K-mean clustering
with predetermined thresholds

The method depends on the optimal
dimensionality of word vectors generated by
Word2Vec, which requires extensive tuning
to ensure accurate anomaly detection.

Farzad and
Gulliver (2020)

Anomaly detection by
Autoencoder

BGL dataset (4,747,963 logs)
(Oliner and Stearley, 2007),
OpenStack (Du et al., 2017a) and
Thunderbird (Oliner and Stearley,
2007)

Combine Autoencoder and
Isolation Forest to identify
unusual samples in huge datasets

The use of two deep Autoencoder networks
increases the computational resources and
time required for training and feature
extraction.

Lin et al. (2016) Agglomerative Hierarchical Hadoop-based Big Data (Shang
et al., 2013)

Log sequences from each cluster
are extracted to determine
potential malicious logs

The reliance on hierarchical clustering,
which can be computationally expensive
and less scalable especially for large-scale
online service systems.

Li et al. (2022b) Kernel clustering DAPRA TC dataset Scoring each clustered by
considering IP addresses, URLs,
user activities and sensitive
information

The proposed method may not be able to
detect attacks that do not use system call
interfaces.

Satpathi et al.
(2019)

Parametric change-point
detection techniques

Virtual network function dataset
(97 million raw syslog messages
and 728 000 messages)

Categorizing error messages from
large distributed data center
networks into distinct error events

The method’s accuracy is highly sensitive to
the choice of hyperparameters.

Adams et al.
(2018)

LDA CAPEC dataset Prioritizing and ranking attack
patterns

Its heavy reliance on the quality and
completeness of the textual descriptions in
the CAPEC database of both the attack
patterns and the system.

Gao et al.
(2021a)

NLP and Unsupervised
learning technique

DAPRA TC dataset Automate theat hunting process
by extracting structured threat
behaviors from unstrutured OSCTI
reports.

THREATRAPTOR’s fuzzy search mode takes
significantly longer execution times
compared to its exact search mode, which
can negatively impact the applicability of
the approach.

Chen et al.
(2022a)

Local Outlier Factor,
Isolation Forest

APT3 dataset (8329 events) and
Classic dataset (13 867 events)

Integration of a machine learning
pipeline to detect cyber attack

Its inability to fully handle the challenge of
imbalanced datasets.

Kayhan et al.
(2023)

Autoencoders Real data from VirusTotal
behavior reports (50 000 entries)

Detect anomalous commands
within Security Information and
Event Management (SIEM) logs

It can only detect unique commands at the
organizational level rather than at the user
or business function level, potentially
missing important context-specific
anomalies.

Yousef et al.
(2021)

Neighborhood Cumulative
Distribution Function
(NCDF) space

Simulated dataset and two real
datasets (CICIDS2017 Sharafaldin
et al., 2018 comprising 2,827,595
observations, 556,541 of which
are malicious and
CIRA-CIC-DoHBrw-2020
MontazeriShatoori et al., 2020
comprising comprises 1,139,362
observations, 249,836 of which
are malicious)

Combine both manual review and
algorithmic analysis to assign
nuanced, continuous scores to
data points without the need for
training or labeling

The construction of the NCDF space is
computationally intensive, which makes the
method inefficient for detecting anomalies
in large datasets.
and classification (CAPEC) datasets for a given system. It first extracts
and analyzes the textual content of the attack dataset using latent
dirichlet allocation (LDA) for topic modeling. Subsequently, the learned
topic model from the CAPEC dataset is utilized to estimate a posterior
distribution of topics relevant to the target system. By prioritizing
and ranking attack patterns under the system’s characteristics, the
cybersecurity expert can detect threats more efficiently in the later
stage.

Multi-phase model approaches. Unsupervised threat detection has seen
the development of multi-phase model approaches that employ vari-
ous techniques to progress through multiple phases, enhancing threat
detection and knowledge integration.

THREATRAPTOR (Gao et al., 2021a): This study introduces a sys-
tem designed to automate cyber threat hunting by leveraging OSCTI.
THREATRAPTOR distinguishes itself with a specialized, unsupervised,
lightweight NLP pipeline tailored for extracting structured threat be-
haviors from unstructured OSCTI reports, significantly outperform-

ing traditional information extraction methods. The system employs
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a domain-specific query language, threat behavior query language
(TBQL), which, coupled with an automated query synthesis mechanism,
enables the concise and expressive querying of system audit logs for
identifying malicious activities. Additionally, THREATRAPTOR features
an efficient query execution engine that optimizes data storage and
querying processes, markedly improving search efficiency across large
datasets. The system’s capability extends to a fuzzy search mode, en-
hancing the generality of threat hunting queries through inexact graph
pattern matching.

Evaluation across a comprehensive set of attack cases demonstrates
THREATRAPTOR’s high accuracy in both threat behavior extraction
and malicious activity detection, with notable efficiency in processing
and querying operations. The system’s use of an unsupervised NLP
pipeline for threat behavior extraction from OSCTI text categorizes
its learning approach as unsupervised. THREATRAPTOR’s innovative
approach to automated cyber threat hunting marks a significant ad-

vancement in cybersecurity practices, offering an efficient, accurate,
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Table 4
Reasoning techniques application in threat hunting.

Study Methods Datasets Approach uniqueness Limitations and future works

Narayanan et al.
(2018)

Knowledge graph reasoner Unified Cybersecurity Ontology
(Syed et al., 2016)

Proposes a cognitive assistant based
on open-source intelligence which
has different terms for different
audiences to early detect
cybersecurity attacks.

However, the current method is limited by
its reactive nature, which means that a
response is generated only after threats
have occurred and relies on the record of
past attack patterns. Therefore, the study
proposes using the dataset collected from
the dark net and hacker communities to
expand the record of attack patterns for
better response when threats are detected.

Marin et al.
(2020)

Causal reasoning
(Kleinberg and Mishra,
2012) and logic
programming (the Point
Frequency function from
Annotated Probabilistic
Temporal logic Shakarian
et al., 2011)

The authors collected 7824 posts
with vulnerability mentions from
56 dark web forums and correlate
them with cyber incidents to
predict imminent cyber-attacks

Considers the socio-personal and
technical indicators of enterprise
attacks to predict imminent cyber
incidents

The framework’s deductive reasoning
method is limited by its reliance on
pre-established rules and patterns,
potentially overlooking new or evolving
attack strategies. Future work aims to
integrate adaptive and learning-based
approaches to improve predictive accuracy
and adapt to emerging cyber threats.

Dritsoula et al.
(2017)

Deductive reasoning with
game theoretic approach

The authors simulated 3 fake
news or malware apps scenarios

Takes into account the attacker’s
tradeoff to classify adverseries

The game-theoretic model’s primary
limitation is its assumption of rational
behavior from attackers and defenders.
Future work should consider scenarios
where attackers may behave irrationally or
unpredictably, enhancing the model’s
robustness and applicability.
and automated solution to the increasingly complex landscape of cyber
threats.

Fuchikoma (Chen et al., 2022a): This study presents a system
named Fuchikoma, which implements a sophisticated approach to cy-
ber threat hunting through the deployment of various ML techniques,
including anomaly detection algorithms such as local outlier factor,
isolation forest, and DBScan, as well as graph algorithms aimed at
identifying and investigating cyber threats effectively. Central to this
methodology is the integration of a machine learning pipeline that
utilizes NLP for the analysis of Windows logs, coupled with graph-
based models that map out the interactions between different system
events. This innovative approach is designed to reconstruct detailed
attack narratives, providing a deeper understanding of cybersecurity
threats.

Additionally, the research introduces enhancements to the machine
learning model through stages such as graph construction, community
detection, attack score calculation, topic modeling, and label propaga-
tion. These advancements are geared towards achieving a comprehen-
sive analysis of cyber threats by examining the complex web of data
relationships. By employing APT3 and classic playbooks to generate
realistic simulated attack data, the study showcases Fuchikoma’s pro-
ficiency in detecting malicious commands with remarkable precision.
This is demonstrated by achieving over an 80% true positive rate and
true negative rate, alongside an F3-score exceeding 60%.

UHAC (Kayhan et al., 2023): This study introduces the unsupervised
hunting of anomalous commands (UHAC) system, which uses an unsu-
pervised ML method designed to detect anomalous commands within
SIEM logs. UHAC leverages the power of autoencoders trained on a
unique combined feature set derived from both document-term and
document-character matrices. By parsing text-based commands at two
distinct levels – term and character — UHAC captures a comprehensive
representation of command data, facilitating the detection of anomalies
through the autoencoder’s reconstruction capabilities. UHAC’s method-
ology encompasses a preliminary filtering step for single-term com-
mands, the creation of a combined feature set, and the development
of an autoencoder-based detector utilizing a custom loss function tai-
lored for anomaly detection. This unsupervised approach is particularly
suited for the cybersecurity domain, where labeled data for training is
scarce, and threats continuously evolve.

The effectiveness of UHAC was demonstrated through its applica-
tion to real data from VirusTotal behavior reports, comprising over
18 
50,000 entries. The system consistently outperformed other anomaly
detection methods, including one-class SVMs, density-based spatial
clustering (DBSCAN), and word embedding models like Word2Vec. In
tests, UHAC successfully identified 84%–89% of anomalies within the
top 10% of evaluated data, showcasing its robustness and efficiency
in identifying potential threats within SIEM logs. UHAC’s unsupervised
learning model, combined with its innovative feature set, presents a
significant advancement in the field of cybersecurity, offering a scalable
and effective solution for enhancing threat detection mechanisms in
SIEM systems. This work opens new avenues for research and applica-
tion in anomaly-based cyber threat hunting, highlighting the potential
of machine learning techniques in addressing the challenges of modern
cybersecurity landscapes.

UN-AVOIDS (Yousef et al., 2021): This paper introduces the un-
supervised and nonparametric approach for visualizing outliers and
invariant detection scoring (UN-AVOIDS) framework, aimed at enhanc-
ing outlier detection through a unique integration of visualization and
scoring mechanisms. UN-AVOIDS addresses the critical need for tools
that can both detect and visualize anomalies in data, particularly in
the realm of cybersecurity. The approach centers on transforming data
into the neighborhood cumulative distribution function (NCDF) space,
where outliers are visually distinguishable from the norm, facilitating
both manual review and algorithmic analysis without the need for
training or labeling. This transformation allows UN-AVOIDS to assign
nuanced, continuous scores to data points based on their deviation in
the NCDF space, providing a more flexible and informative metric for
anomaly detection than traditional binary classifications.

Evaluated against established methods such as local outlier factor
(LOF), isolation forest (IF), and fast angle-based outlier detection (FA-
BOD), UN-AVOIDS demonstrated superior performance across a variety
of scenarios. Its effectiveness was confirmed through tests on simulated
data and two recent cybersecurity datasets, where UN-AVOIDS consis-
tently outperformed comparative methods, as evidenced by higher AUC
scores.

4.3. Reasoning techniques

Unlike traditional ML techniques that primarily focus on pattern
recognition and anomaly detection based on historical data, reason-
ing techniques incorporate a more sophisticated approach, such as

game theory and adversarial reasoning, to anticipate and counteract
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the strategies of attackers. The threat hunting literature presents sev-
eral approaches to enhance detection and analysis capabilities. These
methodologies leverage advanced technologies and reasoning tech-
niques to generate or deduce the hypotheses in a contextual assessment.
The reasoning techniques are classified as inductive reasoning (bottom-
up approach) or deductive reasoning (top-down approach) (Mohamad
et al., 2022). The details of the papers presented in this section are
shown in Table 4.

CCS (Narayanan et al., 2018): The paper suggests a knowledge
raph reasoner, using deductive reasoning techniques in combination
ith a knowledge graph to represent various steps of cyber attacks,

inking these steps to related tools, techniques, and indicators detected
y sensors.By associating specific tools such as Nmap with particular
ttack steps and observing their detection by systems like Snort, the
heory-driven approach deduces potential attack stages. Deductive rea-
oning over the knowledge graph allows for identifying different steps
n the attack chain, enhancing detection capabilities. This method in-
reases confidence in identifying an attack as more and more indicators
re linked, aids in assimilating information from diverse sources detects
ttack variations, and identifies new attacks that share characteristics
ith known ones. However, the current method is limited by its re-
ctive nature, which means that a response is generated only after
hreats have occurred and relies on the record of past attack patterns.
herefore, the study proposes using the dataset collected from the dark
et and hacker communities to expand the record of attack patterns for
etter response when threats are detected.
Socio-personal (Marin et al., 2020): The paper utilizes inductive

easoning techniques, such as causal reasoning and logic programming,
o analyze hackers and their strategies. It captures socio-personal and
echnical indicators to generate corresponding rules based on this in-
ormation. These rules are then used to identify potential cyberattacks.
he proposed model shows a high F1 score (up to 150.24%) in compar-

son with the baseline predictor. The framework’s deductive reasoning
ethod is limited by its reliance on pre-established rules and patterns,
otentially overlooking new or evolving attack strategies. Future work
ims to integrate adaptive and learning-based approaches to improve
redictive accuracy and adapt to emerging cyber threats.
Game theory (Dritsoula et al., 2017): The paper demonstrates game

heory models in cybersecurity to analyze the interactions between at-
ackers and defenders as a strategic game, allowing for the prediction of
otential attacks and the formulation of optimal defense strategies. The
ame-theoretic model’s primary limitation is its assumption of rational
ehavior from attackers and defenders. Future work should consider
cenarios where attackers may behave irrationally or unpredictably,
nhancing the model’s robustness and applicability.

.4. Graph-based approaches

This section presents an overview of various advanced graph-based
ethodologies and cyber threat detection and analysis frameworks.
arious types of graphs are utilized, including Query Graphs, Prove-
ance Graphs, Behavior Provenance Graphs (BPGs), Knowledge Graphs,
eterogeneous Information Networks (HIN), Semantic Association
raphs, and Event Graphs. These approaches leverage graph theory
nd machine learning to model complex relationships between cyber
ntities (e.g., indicators of compromise (IOCs), system events, threat
ctors). They integrate threat intelligence, visualizing attack progres-
ions, and extracting key events to identify and analyze sophisticated
yber threats. The details of the papers presented in this section are
hown in Table 5.
Poirot (Milajerdi et al., 2019a): This study introduces a system for

nhancing cyber threat hunting through the innovative use of CTI and
ernel audit records. Poirot distinguishes itself by effectively leveraging
he relationships between IOCs, which are often neglected in traditional
hreat hunting methodologies. The core approach involves constructing

query graph from CTI, outlining the expected behavior of an attack,
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and a provenance graph from kernel audit logs, detailing the actual
system activities.

The essence of Poirot’s methodology is a graph alignment technique,
where the system aligns the query graph with the provenance graph
to identify potential threats. This alignment is facilitated by a unique
similarity metric that evaluates the correspondence between the two
graphs, enabling Poirot to pinpoint attack activities with high accuracy
within large-scale datasets.

Poirot demonstrates its capability to search through extensive
graphs efficiently, identifying attack behaviors within minutes. Tested
on a variety of datasets, including real-world incident reports and
controlled adversarial engagements, Poirot showed remarkable effec-
tiveness in detecting nuanced attack patterns, underscoring the utility
of CTI correlations as robust artifacts for threat hunting.

DeepHunter (Wei et al., 2021): This paper introduces a method to
enhance cyber threat detection through the application of graph neural
networks (GNNs). The study addresses the challenge of inconsistencies
between actual attack activities and known attack behaviors within
provenance data, a common obstacle in cyber threat hunting. Deep-
Hunter utilizes a GNN model for graph pattern matching, effectively
estimating the matching score between a provenance graph and a query
graph. The approach is innovative, incorporating attribute embedding
networks to integrate information about IOCs, and graph embedding
networks to capture the intricate relationships between IOCs, thereby
providing a robust solution to the inconsistency problem.

The evaluation of DeepHunter across five APT attack scenarios,
including both real and synthetic datasets, demonstrates its ability to
identify all attack behaviors (claimed). This effectiveness is notably
higher than that of Poirot (Milajerdi et al., 2019a).

LogKernel (Li et al., 2022b): This study introduces a cyber threat
hunting method that identifies attack behaviors in system audit logs
without relying on CTI. LogKernel abstracts system activities into be-
havior provenance graphs (BPGs) and employs a custom graph ker-
nel clustering technique to analyze these graphs. By capturing both
the structural information and label data of BPGs, LogKernel effec-
tively quantifies the similarity between behaviors, facilitating accurate
clustering and identification of potential threats.

The method was evaluated using a malicious dataset containing
simulated attack scenarios and the DARPA CADETS dataset, which
includes real attack instances. LogKernel demonstrated capability in
accurately detecting both known and unknown attacks, successfully
identifying all attack scenarios within the datasets. LogKernel’s ap-
proach focuses on structural analysis and similarity-based clustering of
behavior provenance graphs.

Extractor (Satvat et al., 2021): This study introduces an inno-
vative system designed to transform unstructured CTI reports into
structured, concise representations of attack behaviors using prove-
nance graphs. This transformation is crucial for enhancing the utility
of CTI in cybersecurity operations, particularly in threat hunting and
incident response. Extractor tackles the challenges of verbosity, text
complexity, and relationship extraction inherent in processing CTI
reports. The system applies a combination of text summarization tech-
niques, semantic role labeling (SRL), and graph generation methods to
distill relevant attack information, identify key actions and entities, and
construct provenance graphs that accurately represent the sequence
and dependencies of attack behaviors. The evaluation of Extractor
utilized real-world incident reports and DARPA adversarial engagement
reports.

ANUBIS (Anjum et al., 2022): This paper presents a framework
designed to enhance the detection of APTs through the innovative use
of system provenance graphs and Bayesian neural networks (BNNs).
By constructing detailed provenance graphs that capture the causal
relationships between system events, ANUBIS effectively identifies se-
quences of activities indicative of APTs, offering a nuanced understand-
ing of malicious operations within a system. The approach integrates

machine learning into the cyber threat detection process, specifically
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Table 5
Graph-based approaches in threat hunting.

Study Methods Datasets Approach uniqueness Limitations and future works

Milajerdi et al.
(2019a)

Graph pattern matching Publicly released real-world
incident reports and DARPA
adversarial engagement scenarios

Uses CTI correlations and kernel
audits to detect attack patterns

Runtime increases as the size of the query
grows

Wei et al. (2021) Graph Neural Networks
(GNNs)

Five APT attack scenarios with
both real and synthetic datasets

Addresses the challenge of
inconsistencies between actual attack
activities and known attack behaviors
within provenance data

–

Li et al. (2022b) Behavior Provenance
Graphs (BPGs)

Simulated attack scenarios and
the DARPA CADETS dataset

Identifies known and unknown attack
scenarios within the datasets

Its dependency on trusted audit logs,
inability to detect non-system call interface
attacks and OS kernel vulnerability exploits,
manual involvement in label definition, and
less accurate density-based partitioning.
Future work involves addressing data
imbalance in threat hunting and scaling to
other logging formats.

Gao et al. (2022) Meta-Path and Meta-Graph
Instances-Based Similarity
Measure (MIIS) and Graph
Convolutional Network
(GCN)

IBM X-Force Exchange (Brown
et al., 2015) and VirusTotal

Automates CTI analysis and reduce
the manual workload on security
analysts

It considers only a limited number of
infrastructure node types and relations and
disregard the dynamic threat type changes.
Future work involves enriching node
features and relations and extracting
fine-grained structured data from natural
language intelligence reports using NLP and
topic modeling.

Satvat et al.
(2021)

Provenance Graphs and
semantic role labeling
(SRL)

Real-world incident reports and
DARPA adversarial engagement
reports

Identifies key actions and entities,
and construct provenance graphs that
accurately represent the sequence
and dependencies of attack behaviors

The limitations include challenges with
action descriptions spanning multiple
sentences, inability to detect timing and
side-channel attacks, reliance on dictionaries
that may be incomplete, and its focus on
natural language descriptions. Future work
involves improving dictionaries,
incorporating Named Entity Recognition,
and extending the model to infer graphs
from unstructured vulnerability reports for
enhanced vulnerability detection.

Anjum et al.
(2022)

Provenance graphs and
Bayesian Neural Networks
(BNNs)

DARPA OpTC dataset, a
comprehensive collection of
APT-like activities

Detects sophisticated cyber threats
with minimal computational
overhead

Dependence on data from a single IT
infrastructure, need for large training data
volumes, sensitivity to data poisoning
attacks, and a focus on host-based analysis.
Future work involves testing on diverse
technological stacks, improving training
processes, ensuring data integrity, and
exploring universal provenance graphs for
comprehensive APT detection.

King and Huang
(2023)

GNNs and RRNs DARPA OpTC dataset, which
simulates APT-like activities

Predicts potential unauthorized
lateral movements by analyzing the
causal relationships between network
activities

Its dependency on sufficient benign data for
baseline learning, potential contamination
of training data with malicious activity,
difficulty in determining the appropriate
granularity of graph snapshots, and
potential delays in detection time. Future
work involves exploring the use of a greedy
interval partition algorithm for job
assignments, enhancing feature extraction
for system entities, and determining the
optimal granularity for graph time slices to
balance informativeness and training
efficiency.

Kaiser et al.
(2023)

Knowledge graph traversal
and link prediction
techniques

Over 53,000 VirusTotal reports Refines and generates hypotheses
about potential attacks based on
observable network and system
artifacts

Future work involves empirically evaluating
the presented algorithms against
professional security analysts and rule-based
TTP inference like HOLMES (Milajerdi
et al., 2019b), expanding rule bases for
comprehensive ATT&CK technique coverage,
incorporating sequence information from
CTI sources into AttackDB, and developing
automation to close the loop with data
collection based on high-level attack
hypotheses.

(continued on next page)
20 
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Table 5 (continued).
Study Methods Datasets Approach uniqueness Limitations and future works

Wang et al.
(2022a)

Provenance graphs and
GraphSAGE

DARPA Transparent Computing
program, the CAIDA DDoS Attack
2007 dataset, the CICIDS2017
dataset by the Canadian Institute
for Cybersecurity, and the
ADFA-LD dataset from the
Australian Defense Force
Academy

Detects abnormalities within benign
system operations

Closed-world assumption (Sommer and
Paxson, 2010), vulnerability to various
adaptive attacks, reliance on potentially
unrepresentative datasets, system overhead
management, threat fatigue from false
positives, and the need for benign data in
its semi-supervised approach. Future work
focuses on addressing these issues through
improved model updates, robustness against
diverse attacks, better dataset generation,
system performance adjustments, reduction
of false positives, and exploring
unsupervised learning methods.

Li et al. (2023b) Provenance graphs DARPA datasets and simulated
practical APT attack scenarios

Develops a training-free solution that
focuses on the extraction of attacker
activities directly from raw logs

The need for further testing across different
platforms and systems and the exploration
of network event identification from raw
logs. Future work will focus on expanding
the approach’s application, enhancing attack
prevention guidance, and conducting more
experiments with diverse datasets.

Zang et al.
(2023b)

Semantic association
graphs and community
detection algorithms

DARPA 2000, CICIDS 2017, and
real internet traffic from the
China Education Research
Network backbone (CERNET)

Visualizes the progression of
multi-stage attacks and identifies
related groups of threat indicators
that constitute an attack scenario

–

Ho et al. (2021) Graph inference algorithm Commonly available enterprise
logs (780 million internal logins
within a 15-month period at a
large enterprise)

Introduces a specification-based
anomaly detection approach

Challenges with detecting stealthy attacks
that exploit legitimate user logins and
inaccuracies in logging data. Future work
aims to address these issues by exploring
evasion strategies, improving generalization
across different network architectures,
enhancing detection performance, and
incorporating additional data sources and
commercial log-hygiene solutions.
employing a BNN to analyze encoded event traces derived from the
provenance graphs. This method allows ANUBIS to classify these traces
as benign or malicious with a high degree of accuracy, while also
providing confidence levels for its predictions to aid explainability.

Evaluated on the DARPA OpTC dataset, a comprehensive collection
of APT-like activities, ANUBIS showcased exceptional performance,
achieving an accuracy rate of 99% and a precision over 98%, with a
false positive rate of less than 2%. These results underline the system’s
ability to efficiently and reliably detect sophisticated cyber threats with
minimal computational overhead.

The core contribution of ANUBIS lies in its combination of prove-
nance graphs with advanced machine learning techniques, offering
a sophisticated and highly effective tool for APT detection. The use
of a BNN, in particular, enhances the framework’s predictive power
and introduces an element of explainability into the threat detection
process, making it an invaluable asset for cyber-response teams.

Euler (King and Huang, 2023): This study introduces an approach
to detecting lateral movement in network systems, a key strategy used
in APTs. The proposed framework, named Euler, applies temporal link
prediction techniques using GNNs combined with sequence encoding
layers such as RNNs to model and analyze the dynamic behavior of net-
work interactions over time. This methodology allows for the effective
identification of anomalous activities that may signify lateral move-
ments by attackers within a network. The core of Euler’s approach lies
in its ability to process and analyze system provenance graphs, which
detail the causal relationships between network activities, to predict
potential unauthorized lateral movements. By framing the detection of
such movements as a problem of identifying anomalous links within
these evolving graphs, Euler can pinpoint unusual patterns indicative
of cyber threats with high accuracy.

Evaluated on the DARPA OpTC dataset, which simulates APT-like
activities, Euler demonstrated exceptional performance, achieving a
99% accuracy rate and over 98% precision, while maintaining a false

positive rate of less than 2%. These results significantly surpass those
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of existing unsupervised techniques, highlighting Euler’s effectiveness
and efficiency in lateral movement detection.

AttackDB (Kaiser et al., 2023): This paper introduces a novel frame-
work aimed at automating the generation of attack hypotheses in cyber-
security threat intelligence analysis. The framework is comprised of the
AttackDB knowledge base and the attack hypothesis generator (AHG),
and leverages comprehensive threat intelligence from multiple open-
source datasets, including MITRE ATT&CK Enterprise, AlienVault Open
Threat Exchange, IBM X-Force Exchange, and VirusTotal, to create a
detailed knowledge graph. This graph maps high-level ATT&CK tech-
niques to low-level observable artifacts found in behavioral malware
reports, enabling the automated inference of adversarial techniques
from vast amounts of data.

Rather than utilizing conventional ML models, the approach em-
ploys knowledge graph traversal and link prediction techniques to
refine and generate hypotheses about potential attacks based on ob-
servable network and system artifacts. This methodology allows for the
systematic and automated identification of adversarial techniques, sig-
nificantly aiding analysts in the threat detection and analysis process.

Experimental results, based on over 53,000 VirusTotal reports,
demonstrate the effectiveness of the AHG in accurately inferring ad-
versarial techniques, achieving a mean average precision greater than
50% and an AUC of over 0.8.

THREATRACE (Wang et al., 2022a): This study introduces an ad-
vanced system for identifying and tracing stealthy host-based cyber
threats, including program attacks, malware implantation, and APTs, at
the individual system entity level. This approach leverages the power
of data provenance graphs — directed acyclic graphs that detail system
entities and their interactions — combined with GraphSAGE, a graph
neural network designed for inductive learning.

Unlike traditional methods that rely on known attack patterns,
threaTrace focuses on detecting abnormalities in benign system op-
erations, enabling the early detection of sophisticated cyber threats

that subtly alter system behavior. The methodology centers on utilizing
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GraphSAGE in provenance graphs to accurately model and understand
normal system entity behavior. This allows threaTrace to identify de-
viations indicative of malicious activity, addressing the challenges of
data imbalance and the need for early intrusion detection.

The THREATRACE system was evaluated across five public datasets
encompassing a broad spectrum of APT-like activities such as the
DARPA Transparent Computing program, the CAIDA DDoS Attack 2007
dataset, the CICIDS2017 dataset by the Canadian Institute for Cyber-
security, and the ADFA-LD dataset from the Australian Defense Force
Academy for Linux-based intrusion detection, among others.

THREATRACE consistently demonstrates strong performance across
various DARPA TC datasets. Specifically, in the scene #3/THEIA, it
achieved precision and recall rates of 0.87 and 0.99, respectively, cul-
minating in an F1 score of 0.93. Additionally, the framework reached
a precision score of 0.90 in the scene #3/CADETS, maintaining a
high recall of 0.99. However, despite these successes, THREATRACE
exhibits some variability in precision on some other datasets, with the
lowest precision of 0.63 reported in the scene #5/CADETS dataset
alongside a recall of 0.86. This variability indicates potential challenges
in consistently minimizing false positives across varied datasets.

T-trace (Li et al., 2023b): This paper introduces a groundbreaking
approach for tracing APTs through the construction of provenance
graphs by correlating multiple system logs (syslogs). This method ad-
dresses critical challenges in cybersecurity threat analysis, including the
need for efficient pattern learning, semantic correlation, and overcom-
ing the dependency explosion problem that plagues conventional log
analysis techniques. T-trace employs tensor decomposition to mine the
implicit relationships in vast quantities of log data, identifying log com-
munities associated with specific log templates. This process, coupled
with the calculation of significance scores, allows for the extraction
of key events and the discovery of event communities through log
correlation.

Unlike traditional machine learning-based methods for tracing APT
activities, T-trace operates without the need for a predefined training
dataset, offering a training-free solution that focuses on the extrac-
tion of attacker activities directly from raw logs. The framework was
rigorously tested using DARPA datasets and simulated practical APT
attack scenarios, demonstrating T-trace’s ability to significantly reduce
analysis time by 90% while achieving an accuracy rate of 92% in the
construction of provenance graphs. These results highlight T-trace’s
efficiency and precision in identifying specific APT-related events and
constructing detailed graphs that map attacker movements within a
system.

Multi-step attack (Zang et al., 2023b): This study introduces a
framework for reconstructing multi-step attack scenarios by integrating
diverse sources of threat intelligence. The method aims to address the
complexities involved in understanding cyber attacks that unfold in
stages, which are often difficult to trace due to the disparate nature
of the data collected by various security systems. By leveraging the
STIX format, the framework standardizes and fuses threat intelligence,
enabling the analysis of causal relationships among different threat
indicators. The approach involves constructing semantic association
graphs that map out the connections between various pieces of threat
intelligence, effectively visualizing the progression of multi-stage at-
tacks. Further, the method treats attack scenario reconstruction as a
community discovery problem, applying community detection algo-
rithms to identify related groups of threat indicators that constitute
an attack scenario. The evaluation of this framework utilized open-
source benchmark datasets (DARPA 2000, CICIDS 2017) (Sharafaldin
et al., 2019) and real internet traffic from the China Education Research
Network backbone (CERNET) (Zang et al., 2023a).

Hopper (Ho et al., 2021): This paper presents an innovative ap-
proach to detecting lateral movement within enterprise networks, a
critical phase in sophisticated cyber attacks where attackers navigate
through a network to escalate privileges or reach valuable targets.

Hopper leverages commonly available enterprise logs to construct a p
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graph of login activities, identifying suspicious sequences that signify
lateral movements. Unlike traditional methods that focus on anomaly
detection or rely on narrowly crafted signatures, Hopper introduces
a specification-based anomaly detection approach. It identifies funda-
mental characteristics of lateral movement, focusing on sequences that
involve credential switching and access to servers beyond the attacker’s
initial compromise. Hopper employs a graph inference algorithm to
discern the broader paths of user movements, identifying the causal
user behind each path. By analyzing these paths in the context of
specified attack properties — such as credential switching and ac-
cessing previously inaccessible servers — Hopper effectively pinpoints
activities indicative of lateral movement.

The system’s efficacy was evaluated on a dataset comprising over
780 million internal logins in 15 months at a large enterprise, achieving
a 94.5% detection rate across more than 300 realistic attack scenarios,
including a professional red team attack, while maintaining a low false
positive rate.

HinCTI (Gao et al., 2022): This paper introduces a groundbreaking
ystem that leverages CTI to enhance cybersecurity defenses. HinCTI
s designed around the concept of a heterogeneous information net-
ork (HIN) to model CTI, incorporating a variety of cyber-threat

nfrastructure nodes and their intricate relationships. This approach
ddresses the challenges posed by the complexity and heterogeneity
f cyber-attacks and their underlying infrastructure. The methodology
nvolves three key components: (i) employing HIN for CTI modeling to
apture both explicit and implicit relationships among diverse types of
nfrastructure nodes; (ii) utilizing meta-path and meta-graph instances-
ased similarity measure (MIIS) for accurately measuring the similarity
etween threat infrastructure nodes; and (iii) applying a heterogeneous
raph convolutional network (GCN) for the identification of threat
ypes, enhanced with a hierarchical regularization strategy to mitigate
verfitting and improve model performance.

HinCTI’s efficacy was demonstrated through extensive experiments
n real-world data collected from platforms such as IBM X-Force Ex-
hange (Brown et al., 2015) and VirusTotal (Salem et al., 2021).
he system significantly outperformed existing methods in threat type

dentification, showcasing its potential to automate CTI analysis and
educe the manual workload on security analysts.

.5. Rule-based approaches

This section explores rule-based approaches aimed at bolstering
yber threat detection and analysis within enterprise networks. These
ethodologies leverage predefined rules and patterns derived from

hreat intelligence to identify known adversarial tactics, techniques,
nd procedures (TTPs) evident in network traffic and system behavior.
he techniques used include rule-based matching, anomaly detection,
rovenance graph construction, measurement of behavior deviations,
ulti-level provenance modeling, and community discovery. The aim

s to utilize predefined rules and patterns from threat intelligence to
etect, correlate, and interpret complex attack patterns across network
ctivities and system logs.
SteinerLog (Bhattarai and Huang, 2022): This study presents a

ovel system designed to enhance cyber threat detection in enterprise
etworks by automating the correlation of alerts to uncover APT cam-
aigns. Leveraging an approach that combines rule-based matching,
nomaly detection, and provenance graph construction, SteinerLog
acilitates a hierarchical analysis of both intra-host and inter-host ac-
ivities to reconstruct and understand attacker movements across the
etwork.

Rule-based matching allows for the identification of suspicious
vents by comparing system activities against a knowledge base of
nown adversarial TTPs, sourced from community-driven threat intel-
igence repositories. Anomaly detection complements this by flagging
eviations from established patterns of normal behavior, capturing

otentially malicious activities not documented in existing TTPs. The
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core of SteinerLog’s methodology involves constructing provenance
graphs for each host, depicting the system execution history to provide
rich contextual information for detected alerts. Through hierarchical
correlation and analysis, SteinerLog correlates attacker activities across
the network, identifying compromised entities and abstracting complex
attack behaviors into intuitive attack graphs. SteinerLog demonstrates
potential in generating and scoring online attack campaigns for APT
detection through the evaluation of data from a simulated enterprise
network environment utilizing Operational Transparent Cyber (OpTC).
Nonetheless, it encounters hurdles concerning detection accuracy and
limitations within simulations. The system relies on detectors to capture
attacker activities, which might be evaded by well-resourced adver-
saries. Anomaly detectors, while filling gaps left by rule-based systems,
do not tag anomalies with TTPs, requiring manual inspection and de-
pending heavily on training data quality. Simulated attack campaigns,
conducted over hours by security experts, do not fully mimic the
prolonged, stealthier real-world APT campaigns, affecting the system’s
ability to correlate events over extended periods and identify subtle
evasion efforts.

To address these challenges, modifications are suggested: imple-
menting a hierarchical storage and caching mechanism to handle ex-
tensive provenance graphs and utilizing techniques to prune causally
irrelevant data from these graphs. These adjustments aim to enhance
SteinerLog’s ability to detect prolonged, low-intensity attacks without
compromising system performance or risk-scoring accuracy.

C-BEDIM/S-BEDIM (Dong et al., 2023): This paper presents a pi-
oneering approach to detecting lateral movement within enterprise
networks, a critical aspect of identifying sophisticated cyber threats.
This work introduces two methodologies, simple behavior deviation
measurement (S-BEDIM) and complex behavior deviation measurement
(C-BEDIM), which leverage behavior deviation measurements to iden-
tify unusual network activities potentially indicative of an attacker’s
lateral movements.

The methodologies commence by constructing graph sequences
from network access records, converting these into a graphical format
that encapsulates the network’s connection dynamics over time. By
employing connection expansion, the approaches broaden the analysis
scope to include second-order connections, enhancing the detection
capabilities. Deviation scores are subsequently calculated for each
node to quantify behavioral abnormalities, with high-scoring nodes
undergoing further analysis to generate high-quality alerts indicative
of potential lateral movement.

The evaluation of real-world datasets from the intranets of two
enterprises demonstrated the effectiveness of S-BEDIM and C-BEDIM in
accurately identifying lateral movement activities. Notably, C-BEDIM
achieved a 100% detection accuracy under specific conditions, outper-
forming traditional detection methods and underscoring its potential as
a robust solution for enterprise security.

ProvTalk (Tabiban et al., 2022): This study presents a novel system
designed to enhance the security incident analysis in complex network-
ing functions virtualization (NFV) environments. ProvTalk introduces
a multi-level provenance model that effectively captures the intricate
dependencies across various NFV layers, enabling a comprehensive un-
derstanding of security incidents by constructing detailed provenance
graphs from system logs.

The approach adopted by ProvTalk is multifaceted, comprising the
following stages:

Multi-level Provenance Construction: A method to encapsulate the
dependencies between different NFV levels into a coherent provenance
graph, providing a holistic view of system activities.

Multi-level Pruning: A technique to improve the interpretability of
provenance graphs by pruning irrelevant information, focusing analysis
on the nodes critical for understanding the security incident.

Mining-based Aggregation: An innovative aggregation method that
condenses redundant information within the provenance graphs, sim-

plifying the analysis by highlighting significant patterns and behaviors. t
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Rule-based Natural Language Translation: A strategy to translate the
technical details encapsulated in the provenance graphs into human-
readable text, facilitating easier interpretation and analysis by security
analysts.

ProvTalk was evaluated in a real-world scenario using the Tacker-
OpenStack NFV platform, where it demonstrated significant capabilities
in reducing the complexity of provenance graphs while retaining es-
sential information for security analysis. The system achieved approxi-
mately a 3.6 times reduction in graph size through multi-level pruning
and a two times reduction via aggregation. This study leverages NLP
techniques and rule-based approaches for the innovative translation of
provenance graphs into interpretable formats.

HERCULE (Berady et al., 2021): This paper demonstrates a frame-
work for analyzing system logs to reconstruct narratives of multi-stage
cyber attacks. The HERCULE system leverages community discovery
techniques within a graph analytics framework to correlate disparate
log entries across various system logs. By modeling multi-stage intru-
sion analysis as a community discovery problem, HERCULE identifies
‘‘attack communities’’ that represent sequences of related attack steps
within the generated multi-dimensional weighted graphs. The approach
begins with the construction of causal dependency graphs from system
logs, aiming to capture the intricate relationships and sequences of
events indicative of cyber attacks. Utilizing advanced graph analytics
and community detection algorithms, HERCULE efficiently segregates
these sequences into coherent narratives that detail the progression
of attacks across multiple stages. Evaluated against a dataset com-
prising well-known APT attack families, HERCULE demonstrated its
effectiveness in accurately identifying and reconstructing attack nar-
ratives, showcasing high precision, recall, and F1 scores. This success
underscores the framework’s capability to discern between benign and
malicious activities within extensive system logs, significantly reducing
false positive rates.

4.6. Other methods

Other threat hunting methodologies utilize miscellaneous tech-
niques including behavioral analytics, reinforcement learning (RL), and
various statistical methods.

UEBA (Shashanka et al., 2016): This study presents an approach
to enhancing enterprise cybersecurity through the deployment of user
and entity behavior analytics (UEBA). By leveraging advanced machine
learning techniques, specifically singular value decomposition (SVD)
and Mahalanobis distance, this intelligence platform is designed to
monitor and analyze the behaviors of users, IP addresses, and devices
within an enterprise network to identify potentially malicious activities.
This methodology enables the detection of anomalies by comparing
observed behaviors against established baselines, flagging deviations
for further investigation. The system’s effectiveness is demonstrated
through the application of SVD for data transformation and dimen-
sionality reduction, coupled with the use of Mahalanobis distance for
quantifying the extent of deviation from normal behavior patterns.

While the paper details the theoretical underpinnings and opera-
tional mechanisms of these techniques, it does not provide specific
quantitative results from the deployment of the UEBA modules. In-
stead, it offers empirical examples to illustrate the system’s capability
in detecting anomalous activities, underscoring the potential for the
early identification and mitigation of security threats. Although explicit
datasets are not mentioned, the application of these machine learning
algorithms implies the analysis of comprehensive data sources within
the enterprise, such as network logs and packets, to model normal
behavioral patterns and identify outliers.

CTI Ontology (Mavroeidis and Jøsang, 2018): This paper introduces
n automated threat assessment system designed to enhance cyber-
ecurity defenses by analyzing continuous incoming feeds of Sysmon
ogs. By leveraging the detailed visibility provided by Sysmon logs,

he system classifies software into various threat levels in real-time,
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thus enabling organizations to identify and respond to potential cyber
threats more effectively. At the heart of the system is a CTI ontol-
ogy (CTIO), which integrates and represents diverse sources of threat
intelligence, thereby supporting informed decision-making processes.
The approach is grounded in a review of current threat intelligence
practices and the development of an agile, ontology-based framework
that encapsulates a wide array of cyber threat data — from low-
level technical observables to high-level actor strategies and goals. The
system’s performance and operational flow are demonstrated through
practical applications, highlighting its capability for situational aware-
ness, threat prediction, and the execution of automated courses of
action.

MABAT (Dekel et al., 2023): This paper introduces the multi-armed
bandit approach for threat-hunting (MABAT) framework, which lever-
ages multi-armed bandit (MAB) techniques to optimize the process
of targeted data collection for cyber threat hunting. This approach
is predicated on the need to efficiently gather and analyze data re-
lated to potential cyber threats, balancing between exploring new
data and exploiting known information to maximize the relevance of
collected artifacts. MABAT introduces an application of combinatorial
multi-armed bandit problems, specifically the multi-shared-arms ban-
dits variant, to the domain of cyber threat hunting. By employing
augmented MAB policies that consider the shared attributes among
various attacks, MABAT enhances the ability to identify and focus on
the most pertinent attack vectors based on CTI.

The effectiveness of MABAT was demonstrated through an eval-
uation utilizing real behavioral reports from VirusTotal, containing
inconsistencies and varied degrees of attack representation. This tech-
nique can be classified under the umbrella of reinforcement learning
due to its focus on optimizing a decision-making process through
learning.

ELK stack (Almohannadi et al., 2018): This study proposes an
approach for generating CTI by deploying honeypots to collect data
on potential cyber attacks. The approach utilizes the ELK stack (Elas-
ticsearch, Logstash, and Kibana) to analyze and visualize the data
obtained from honeypots, aiming to uncover attack patterns and be-
haviors. By analyzing honeypot log data, the study seeks to enhance the
understanding of cyber threats and improve the intelligence available
for cybersecurity defenses. The methodology centers around the col-
lection of cyber incident log data from honeypots deployed in an AWS
cloud environment. The log data, which encompasses a variety of cyber
attack attempts, is then processed and analyzed using elastic search
technology. The use of the ELK stack enables efficient data analysis
and visualization, facilitating the identification of malicious activities
within the voluminous data generated by honeypots. While the research
outlines the theoretical framework and potential of using honeypots
and elastic search for threat intelligence, it does not provide specific
empirical results or performance metrics from the analysis. Rather, the
focus is on demonstrating the feasibility and conceptual benefits of the
proposed approach for enhancing CTI through the innovative use of
technology.

Hidden communication channels using steganography: Opera-
tion Stegoloader is a notable example of cybercriminals using steganog-
raphy for data exfiltration and malware concealment. Stegoloader, also
known as ‘‘TSPY_Gatak’’, is a type of malware that uses steganographic
techniques to evade detection, first revealed in 2015 (Mimoso, 2015).

However, there are a few campaigns, such as UAC-0184, that are ac-
tively using steganography techniques to embed malicious code within
image files (IDAT loader 2024). The TA558 threat actor conducted
the SteganoAmor campaign, targeting over 320 organizations globally,
with a focus on Latin America. This campaign used steganography to
embed base64-encoded payloads within JPG image files. These images
were delivered through phishing emails exploiting an old Microsoft
Office vulnerability (CVE-2017-11882). The payloads included various
malware families such as AgentTesla, FormBook, Remcos, LokiBot,

Guloader, Snake Keylogger, and XWorm. This wide-ranging campaign
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exploited compromised SMTP servers and legitimate cloud services
to distribute and control the malware (Technologies, 2024; Abrams,
2024). Several papers have extensively explored the topic of hid-
den data communication, focusing on the analysis of various neu-
ral network architectures to identify potential hidden communication
channels (Dzhanashia and Evsutin, 2024; Lerner and Romanov, 2022;
Melman and Evsutin, 2024).

5. Challenges

The objective of this section is to tackle research question RQ4 by
elucidating the challenges inherent in existing threat hunting models
as documented in the literature. Despite substantial advances in the
threat hunting field over recent decades, practitioners continue to
grapple with numerous challenges that stymie their efforts towards
more effective detection and prevention of malicious activities. These
challenges not only underscore the complexity and evolving nature of
cyber threats but also highlight the gaps in current methodologies,
technologies, and analyst skills. This section summarizes the primary
obstacles encountered in threat hunting, shedding light on the intri-
cacies of navigating a landscape where adversaries constantly refine
their strategies to elude detection. As such, the summary provides a
foundational understanding of the hurdles that must be overcome to
enhance the efficacy and efficiency of threat hunting practices. The
major challenges encountered in the context of threat hunting include,
but are not limited to:

1. a lack of labeled data;
2. imbalanced datasets;
3. multiple sources of log data;
4. adversarial techniques;
5. a scarcity of human experts and data intelligence.

5.1. Challenge 1: A lack of labeled data makes it difficult to train trustwor-
thy threat detection models

Anomaly detection has long been framed as a classification prob-
lem in event logs, distinguishing normal activities from abnormal
ones (Agarwal et al., 2021; Apruzzese et al., 2023a). Various ap-
proaches have been employed, including supervised and unsupervised
models, spanning traditional ML to deep learning (DL). Supervised
learning techniques have been widely developed, involving training
with labeled data to classify event logs and identify malicious activities.
These techniques encompass a range of methodologies, from classical
shallow models such as decision trees (Khraisat et al., 2020) and
support vector machines (Mukkamala et al., 2002) to more com-
plex deep learning architectures like convolutional neural networks
(CNNs) (Wang et al., 2020; Vinayakumar et al., 2017) and recurrent
neural networks (RNNs) (Yin et al., 2017; Woźniak et al., 2020).
Using labeled data, supervised learning enables the construction of
highly accurate models capable of effectively detecting a wide range of
malicious activities. However, relying on labeled data presents its own
challenges. It is time-consuming and resource-intensive to acquire and
annotate large volumes of labeled data, especially since cyber threats
are dynamic and constantly evolving. Furthermore, the availability of
labeled data may be limited, especially for emerging or rare threat
scenarios, thereby offsetting the effectiveness of supervised learning
strategies.

In addressing these challenges, novel techniques such as self-
supervised, online learning and federated learning have been recently
introduced. For example, Self-Supervised Intrusion Detection (SSID)
(Nakıp and Gelenbe, 2024) is a recently proposed framework, which
enables a fully online Deep Learning (DL) based Intrusion Detection
System (IDS) that requires no human input or prior offline training. Uti-

lizing an Auto-Associative Deep Random Neural Networkmodel (Nakip
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and Gelenbe, 2021; Gelenbe and Nakıp, 2022), the proposed frame-
work classifies and labels incoming traffic packets based on the IDS’s
decisions. With this approach, the IDS can continuously adapt to new
network conditions and threats, ensuring its performance without pre-
labeled data. For botnet attack detection in IoT devices, Shao et al.
(2021) proposes an adaptive online learning strategy that enables the
detection model to adapt to pattern changes in IoT traffic in real-time.
This approach addresses concept drift and dynamic traffic patterns,
improves detection performance by employing ensemble learning, and
reduces reliance on pre-labeled training data. Abououf et al. (2022)
proposes a lightweight anomaly detection system for IoT devices uses
a Long Short-Term Memory Autoencoder (LSTM AE). The approach
reduces the reliance on extensive communication with the server and
utilizes smart inference techniques to detect anomalies without requir-
ing large amounts of labeled data. Nakip et al. (2023) proposes the
Decentralized and Online Federated Learning Intrusion Detection (DOF-
ID) architecture, which enhances detection performance by leveraging
collaborative learning across distributed system components. DOF-ID
improves intrusion detection without reliance on extensive labeled data
by allowing components to learn from experiences gained by other
components, along with their own local data.

5.2. Challenge 2: Imbalanced datasets make learning generalization difficult

Imbalanced datasets pose another significant obstacle to threat
detection. Imbalanced datasets arise when the distribution of labeled
classes is highly skewed. Hence, this issue is closely linked to the need
for labeled data in supervised learning techniques. The challenge is
particularly prevalent in the cyber threat arena. In many real-world sce-
narios, instances of anomalous activities are relatively rare compared
to normal activities. For example, every system that logs users and their
daily activities generates a large number of events. However, while the
majority of system events will represent legitimate user behavior, only
a small fraction may indicate potential security threats (Zhang et al.,
2022).

Despite the myriad approaches available, addressing imbalanced
datasets in threat detection remains a daunting task (Chen et al.,
2022b). The inherent challenge stems from the fact that any ML al-
gorithm, be it supervised or unsupervised, is susceptible to the adverse
effects of class imbalance. When trained on such datasets, models tend
to exhibit biases towards the majority class, resulting in suboptimal
generalization and an elevated risk of false negatives. Consequently,
the ability to detect rare or emerging threats becomes markedly com-
promised. Efforts to mitigate this issue include either rebalancing the
dataset (Moti et al., 2020) or reposting the problem as anomaly detec-
tion (Du et al., 2017b; Villarreal-Vasquez et al., 2021); however, the
persistent nature of class imbalance underscores the complexity of the
challenge and the need for continued innovation in the field of threat
detection. In addition, the threat hunting datasets are susceptible to the
temporal sensitivity concept where attack logs predominantly appear
towards the end of the investigation period, highlighting a nuanced
challenge in threat hunting and detection. Imbalanced datasets can
pose significant challenges to threat hunting and detection in various
scenarios, as outlined below:

Rare Event Detection: Cyber threats, by nature, are less frequent
han normal network events. This rarity means that models trained on
uch data may have difficulty learning the characteristics of these rare
vents, leading to a high rate of false negatives, where actual threats
o undetected.
Dynamic Nature of Threats: Cyber threats are not static; attackers

ontinually develop new techniques to evade detection. As a result, the
haracteristics of malicious activities can change over time, leading to
oncept drift. This dynamic nature further complicates model training
n imbalanced datasets, as models need to generalize well to previously

nseen threats while dealing with an imbalance.
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Cost of Misclassification: In cybersecurity, the cost of misclassify-
ing a malicious event as benign (false negative) is often much higher
than misclassifying a benign event as malicious (false positive). False
negatives can allow attackers to continue their activities undetected,
while false positives, although inconvenient, typically result in ad-
ditional investigation. This asymmetric cost reinforces the need for
models that are sensitive to the minority class in imbalanced datasets.

The literature suggested several techniques to overcome imbal-
anced data. Techniques such as the synthetic minority over-sampling
technique (SMOTE) Chawla et al. (2002) support vector machine
(SVM) technology (Akbani et al., 2004), cost-sensitive learning (Fer-
nández et al., 2018), and K-nearest neighbor (KNN) technology each
offer unique mechanisms for rebalancing data (He and Garcia, 2009).
SMOTE, for instance, synthesizes new minority class instances by inter-
polating between existing ones, thereby enriching the dataset without
losing valuable information. On the other hand, SVM technology and
KNN technology apply modifications at the algorithmic level, altering
how the classifier interprets the class distribution, thus making these
models more robust to imbalances. Fig. 5 presents a generic diagram
that abstracts the techniques used to deal with imbalanced data.

Beyond data-level interventions, algorithm-level methods provide a
sophisticated framework for adapting the learning process itself to be
more attuned to class imbalance. Single-class learning (Tax and Duin,
2004) and ensemble learning emerge as pivotal approaches in this cat-
egory. Single-class learning focuses on the properties of one class, often
the minority, to enhance its detectability, a technique particularly bene-
ficial in scenarios where the minority class is of paramount importance.
Ensemble learning, incorporating strategies based on both bagging
and boosting, leverages the collective strength of multiple models
to achieve a more balanced and accurate classification performance.
Bagging methods like random forests reduce variance by training nu-
merous decision trees on varied subsets of the data while boosting
sequentially refines the model focusing on previously misclassified in-
stances, thereby incrementally improving classification accuracy. These
algorithm-level methods underscore the evolving complexity and so-
phistication in addressing imbalanced datasets, emphasizing a move to-
wards more nuanced and adaptable machine learning solutions (Wang
et al., 2021).

5.3. Challenge 3: Leveraging multiple sources of data enhances the effec-
tiveness of threat detection

In cybersecurity, relevant data can originate from various sources,
such as Windows event logs, Sysmon logs, and memory logs. Moreover,
data streams from user machines, network infrastructures, and sentinel
systems contribute to the rich tapestry of information available for anal-
ysis. Integrating and analyzing these diverse data sources cohesively is
crucial to improving the effectiveness of threat detection. As different
sources of data complement each other by providing both compatible
and distinct types of information, integrating multiple modes of data
in the learning model will boost the learning process to learn more
comprehensive features or indicators to detect malicious event logs.

Various multi-source approaches have been developed for the cyber
threat detection problem, for example, to enhance an IDS (Lin et al.,
2022), or for mining association rules from snort logs, firewall logs,
and system logs (Lou et al., 2021). In general, many sources of logs,
e.g. from firewalls, web servers, and vulnerability scanners, might be
collected and standardized before being incorporated into the learning
model (Lin et al., 2009). These approaches highlight the significance of
considering multiple sources of data in the learning process. However,
these methods typically apply data fusion either early or late during
the process of integration. While they aim to enrich the learning model
with comprehensive knowledge, such fusion techniques may overlook
interactions among multiple sources, potentially being less effective

than intermediate fusion (Nayak and Luong, 2023).
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Fig. 5. The main techniques for classifying imbalanced datasets.
5.4. Challenge 4: Evolving adversarial techniques limit the effectiveness of
retrospective learning

The challenge posed by adversarial techniques in cyber threat hunt-
ing lies in the ability of adversaries to adapt and evolve their tactics,
developing sophisticated strategies to obfuscate their activities and
circumvent traditional defense mechanisms.

Adversarial techniques employ evasion, manipulation, and vulnera-
bility exploitation to evade detection, including zero-day exploits (Chen
et al., 2022a), and advanced persistent threats (APTs) (Mahmoud et al.,
2023).

Evasion Techniques: Adversaries utilize various evasion tactics to
conceal their presence and activities from detection systems, including
encryption, obfuscation, and stealthy manipulation of network traffic
to evade IDS, IPS (intrusion prevention systems), and antivirus soft-
ware. SOTA cyber threat hunting combines advanced technologies,
proactive methods, and human expertise to counter evasion tactics,
employing a multi-layered approach to detect and mitigate sophis-
ticated cyber threats. ML-based threat models may be trained using
adversarial examples, i.e. malicious inputs deliberately designed to
deceive the model (Debicha et al., 2021; Malik et al., 2022). A threat
detection model can also be strengthened against evasion techniques
by learning the robust features that capture both benign and mali-
cious data (Zhang et al., 2016). Additionally, ensemble models, which
combine multiple weak classifiers to form a robust classifier, further
reduce vulnerability to evasion strategies (Ahmed et al., 2022; Li and Li,
2020). However, supervised learning-based methods that rely heavily
on retrospective training data remain at a disadvantage against the
dynamic and ever-evolving nature of daily emerging threats.

Zero-Day Exploits: Zero-day exploits are vulnerabilities in software
or systems that are unknown to vendors or security experts. Attack-
ers exploit these vulnerabilities to launch targeted attacks without
being detected by signature-based security tools. The detection and
mitigation of zero-day exploits require advanced threat-hunting capa-
bilities (Sun et al., 2018), including the use of intrusion detection,
anomaly detection, and behavioral analysis.

Intrusion Detection and Prevention Systems: These systems are
designed to continually monitor network traffic to detect suspicious
activity. The incorporation of ML techniques such as deep learning
(DL), clustering, and model updating into IDS can improve the ability
to detect and respond to evolving cyber threats, including zero-day
exploits. This suggests the need for multi-component or hybrid systems
to improve the detection and categorization of threats. For example,
a hybrid unsupervised system Pu et al. (2020) was designed to detect
zero-day network intrusion attacks, combining shallow ML algorithms
such as subspace clustering and support vector machine (SVM) clas-
sification to detect attacks without any prior knowledge. Similarly, a
DL-based IDS framework Soltani et al. (2023) was designed for adaptive
intrusion detection, utilizing multiple phases to adaptively improve
threat detection and response capabilities.

Anomaly Detection and Behavior Analysis: Advanced security
solutions monitor systems and networks for anomalies and unusual
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patterns. By analyzing the behavior of software and users, these so-
lutions can identify potential zero-day exploits and other sophisti-
cated attacks that traditional signature-based detection methods may
overlook (Blaise et al., 2020; Dumitrasc, 2023).

5.5. Challenge 5: Scarcity of human experts and data intelligence limits
threat hunting

The shortage of human experts with specialized skills and expertise
is an important challenge of cybersecurity, along with the explosive
development of online platforms, information technologies, and dig-
ital technologies. It poses a critical risk to organizations’ ability to
detect, analyze, and mitigate cyber threats, potentially leaving them
vulnerable to security breaches.

The role of the cyber threat analyst emerges as paramount, partic-
ularly in the context of dynamic and increasingly sophisticated cyber
threats. As adversaries adapt their TTPs, the task of identifying and
validating threats becomes critical (Apruzzese et al., 2023b). Cyber
threat analysts are integral to this process, employing a combina-
tion of technical expertise and analytical capabilities to sift through
alerts generated by ML and DL models. Their work involves not only
the identification of potential threats but also the validation of these
threats to ensure accuracy and relevancy. To validate the threats, they
usually rely on a broad range of sources for information on emerg-
ing threats, attacker tactics, and IoCs documents (Sauerwein et al.,
2019). These sources vary widely, encompassing everything from open
and commercial data feeds to services provided by threat intelligence
firms (Sauerwein et al., 2019). However, as the variety and use of these
threat intelligence sources expand, there remain unresolved questions
about their effectiveness, especially concerning the quality of data they
deliver.

To address the shortage of human experts, current threat-hunting
methodologies either rely on data analytics and ML for automation
or leverage external sources that offer threat intelligence capabilities.
As the volume of available intelligence grows, there is an increasing
demand to augment human analysts with automated tools whenever
feasible. This requires not only data that is structured appropriately but
also data that can be understood and processed by machines in terms
of its quality (i.g., playbooks). Numerous studies have identified data
quality issues as a significant hurdle in the effective exchange of threat
intelligence and in information security practices due to the subpar
quality of input data being utilized. Yet, despite these challenges, there
is a lack of comprehensive research on data quality issues in the realm
of threat hunting (Zibak et al., 2022).

Due to the complexity and dynamic nature of the threat landscape
and the intelligence data quality issues, this threat hunter verification
process is essential for the development of defensive playbooks where
the balance between false positives and false negatives holds signifi-
cant implications for the efficiency and effectiveness of cybersecurity
operations team to protect organizational assets. However, the reliance
on ML and DL models for threat detection presents its own set of
challenges. While these technologies offer the ability to process and
analyze vast quantities of data at speeds unattainable by human ana-
lysts, they also tend to generate a high volume of alerts, including both
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legitimate threats and benign anomalies. This creates a situation where
cyber threat analysts must engage in extensive verification processes,
which can be both time-consuming and labor-intensive. The need to
meticulously review and corroborate each alert to distinguish between
true threats and false alarms underscores the criticality of the cyber
threat analyst’s role. Moreover, the sheer volume of alerts, including
those identifying potentially malicious groups or activities, requires not
only technical acumen but also a significant investment of time and
resources. This scenario underscores the importance of enhancing the
efficiency of threat detection and validation processes, possibly through
the integration of more sophisticated algorithms and the refinement of
existing ML and DL models to reduce the incidence of false positives
and negatives, thereby streamlining the workload of cyber threat ana-
lysts and improving the overall efficacy of cybersecurity measures (Gao
et al., 2021a; Kaur et al., 2023).

Data Analytics and Machine Learning: This approach focuses on
maximizing automation by applying data analytics and ML to minimize
or even eliminate human intervention. It encompasses data collection,
analysis, anomaly detection, and automated response. For instance, ML-
based models can predict and trigger predefined actions like isolating
or blocking viruses (Adedoyin and Teymourlouei, 2021) or malicious
activities (Prabu and Sudhakar, 2023). Over the past decade, various
ML models, from unsupervised (Chen et al., 2022b; Kayhan et al., 2023;
Wei et al., 2020) to supervised systems (Villarreal-Vasquez et al., 2021;
Fotiadou et al., 2021), have been developed to automate the threat
detection process.

Threat Intelligence Integration and Orchestration: This
approach involves multi-phase systems that integrate and aggregate
threat intelligence from diverse sources (Wagner et al., 2019), estab-
lishing a knowledge base to support real-time threat detection and
orchestration. For example, a framework for automated threat hunting
was proposed (Arafune et al., 2022b) that can automatically seek
out TTPs from industrial control systems based on threat intelligence
provided by MITRE ATT&CK. Another automated system for threat
hunting (Mavroeidis and Jøsang, 2018) analyzes Sysmon logs to cat-
egorize system processes into different threat levels based on identified
characteristics. Utilizing continuously updated threat intelligence via
an ontology, the system executes automated responses to indicators
of compromise. Similarly, THREATRAPTOR (Gao et al., 2021b) is an
automated model to extract information regarding threat behaviors
(IOCs and their relationships) from unstructured open-source cyber
threat intelligence (OSCTI) reports, using the extracted information to
enhance threat hunting.

However, while automated cyber-threat intelligence (CTI) collection
focuses on proactive threat identification and analysis, it may not cap-
ture all evolving cyber risks. Human experts bring critical thinking and
adaptability to cybersecurity, enabling organizations to understand new
attack techniques and effectively mitigate risks. Additionally, proactive
threat hunting involves human experts actively searching for signs of
malicious activities across various sources, such as the open, deep, and
dark webs, using tools like VirusTotal,1 Yara, cyber threat intelligence
platforms and MISP (Malware Information Sharing Platform and Threat
Sharing).2

Therefore, though advanced threat-hunting systems use automation
to minimize human involvement, human expertise remains crucial.
A balanced model integrating automated tools and human insight is
essential for flexible threat detection and mitigation, enabling effective
threat detection whilst also allowing human involvement in threat
hunting when available.

6. Related works

Table 6 illustrates the comparison between related works in our
survey papers, highlighting the contributions and differences from
existing literature.

1 https://www.virustotal.com/.
2 https://www.misp-project.org/.
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Chen et al. (2022c) provide a critical examination of current ML
techniques applied to secure IoT networks against APTs. Through an
extensive review, the authors identify and discuss the primary vulnera-
bilities of IoT systems, the nature of APTs, and the range of ML methods
deployed to enhance security measures. Key ML techniques, including
AdaBoost, decision trees, KNN, linear regression, random forest, sup-
port vector machines, and deep learning, are explored for their efficacy
in identifying and mitigating cyber threats in the IoT landscape. Despite
the potential of ML to revolutionize IoT security, the paper underscores
significant challenges in effectively detecting APTs due to their stealthy
characteristics and the low volume of APT traffic compared to normal
network activities. This difficulty is exacerbated by the absence of
comprehensive datasets encompassing the full spectrum of APT attacks,
hindering the development and training of ML models tailored for
APT detection in IoT contexts. The survey also emphasizes the need
for future research to bridge the gap between general cyber threat
detection and the nuanced requirements of APT defense, suggesting
directions for advancing ML methodologies, generating APT-specific
datasets, and exploring new defense mechanisms.

Qian et al. (2020) offer an exhaustive review and taxonomy of
the processes involved in developing, deploying, and maintaining ML
applications in the IoT domain. The paper explores various ML methods
employed in IoT applications, ranging from traditional machine learn-
ing and deep learning to reinforcement learning techniques. The review
scrutinizes the deployment of these models within the heterogeneous
and resource-constrained environments characteristic of IoT systems,
addressing the complexities of software deployment, scalability, and in-
teroperability. It underscores the significance of addressing the unique
challenges posed by the IoT environment to harness the full potential
of ML technologies in this rapidly expanding field.

Rahman et al. (2023) focus on automated cyberthreat intelligence
(CTI) extraction from textual sources, providing an expansive overview
of current methodologies, challenges, and advancements. The paper
categorizes CTI extraction purposes, identifies various textual sources of
CTI, and examines the technical hurdles in automating CTI extraction.
The survey emphasizes the application of NLP and ML techniques
as pivotal in parsing the vast and growing corpus of textual content
related to cybersecurity threats. These technologies play a crucial role
in extracting actionable intelligence from unstructured data, facili-
tating timely decision-making processes in cybersecurity operations.
While the paper does not present direct experimental results or specific
datasets, it provides a critical analysis of different ML approaches
employed in CTI extraction, including AdaBoost, decision trees, KNN,
linear regression, random forest, SVM, and deep learning. The survey
highlights the challenges posed by APTs in IoT networks, noting the
difficulties in applying ML methods to detect such stealthy and low-
occurrence cyber threats. The paper hypothesizes that despite the
promising capabilities of ML in general cyber threat detection, signif-
icant challenges remain in accurately identifying APTs due to their
sophisticated nature.

Nour et al. (2023) provide a comprehensive review of the concept of
threat hunting in enterprise networks. The survey categorizes existing
threat hunting solutions based on the techniques used, such as machine
learning/AI-based threat hunting, graph-based threat hunting, rule-
based threat hunting, and statistical-based threat hunting. The paper
highlights the necessity of adopting new proactive defense approaches
in response to evolving threats, where APTs utilize sophisticated tech-
niques to remain undetected for prolonged periods. Threat hunting is
presented as an iterative approach to generating and revising threat
hypotheses, aiming to uncover stealthy attacks and malicious activities
that standard detection mechanisms might miss. The survey under-
scores the role of threat hunting in improving early attack detection,
leveraging various manual and automated tools/techniques to test and
validate initial hypotheses, ultimately contributing to the development
of more concrete and efficient threat hunting solutions for enterprise

networks

https://www.virustotal.com/
https://www.misp-project.org/
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Table 6
Comparison of our contribution with related surveys.

Study Contribution Year Covered
solutions

Threat
hunting

Year
Interval

Scope

Chen et al.
(2022c)

∙ Review AI-based approaches for network
intrusion detection and mitigation.
∙ Summarize public IoT datasets for attack
detection, scarcely covered in the existing
literature.
∙ Discuss opportunities and challenges in
tackling APT attacks

2022 14 ⊘ 2007–2021 ∙ Limited to IoT structure.
∙ Missing the hypothesis background
for threat detection.
∙ Limited to AI techniques

Qian et al.
(2020)

∙ Outline a pipeline for ready-to-deploy ML
models and explore techniques for each stage.
∙ Review software deployment methods and
challenges specific to ML models in IoT
settings.

2020 21 ⊘ 2010–2019 ∙ Limited to IoT structure.
∙ Missing the hypothesis background
for threat detection.
∙ Limited to AI techniques

Rahman et al.
(2023)

∙ Outline the observed CTI extraction pipeline
steps.
∙ List NLP and ML techniques for CTI
extraction.

2023 11 ⊘ 2011–2021 ∙ Limited to CTI sources.
∙ Missing the hypothesis background
for threat detection.
∙ Limited to AI techniques

Nour et al.
(2023)

∙ Survey threat hunting models, methods,
processes, and components.
∙ Detail threat-hunting techniques.
∙ Highlight challenges in threat hunting.

2023 10 ● 2017–2023 ∙ Missing the techniques to generate
and analyze hypothesis background
for threat detection.
∙ Missing the method solves the
challenge in Heterogeneity of the
dataset and extracting data from
different cyber threat sources

Sun et al. (2023) ∙ Summarize a six-step methodology for
converting cyber info to actionable knowledge
for proactive defense.
∙ Review and analyze state-of-the-art solutions
in CTI mining

2023 18 ⊘ 2014–2023 ∙ Limited to CTI source.
∙ Missing the hypothesis background
for threat detection.
∙ Missing the method solves the
challenge of Heterogeneity of the
dataset and extracting data from
different cyber threat sources.

Our study ∙ Offer a taxonomy of threat-hunting
techniques.
∙ Provide an insight into techniques for
proactive threat detection hypothesis
generation and analysis.
∙ Examine not only AI application challenges
but also AI crime in threat hunting.
∙ Address imbalance data structure in threat
hunting.
∙ Highlight the human element in threat
hunting model.

2024 29 ● 2014–2024 Achieved all four research questions
RQ1–RQ4

⊘ means Partly Yes; ● means Yes.
Sun et al. (2023) provide a thorough overview of the current
landscape in CTI mining. This survey demonstrates the multifaceted
process of transforming diverse cybersecurity-related data sources into
actionable intelligence, essential for preempting and mitigating cyber
threats. Through an extensive review of state-of-the-art methodologies,
the survey reveals how advanced machine learning and NLP techniques
can extract valuable CTI from vast quantities of unstructured data. The
discussed ML methods encompass both supervised and unsupervised
learning paradigms, as well as cutting-edge deep learning architectures
like graph neural networks and long short-term memory networks,
tailored for the nuanced requirements of CTI extraction from textual
data. Although the survey does not present new experiment results, it
compiles and assesses various datasets and ML approaches used in con-
temporary CTI mining research, offering insights into the effectiveness
of these methods in identifying cybersecurity entities, events, TTPs,

hacker profiles, IoCs, vulnerabilities, and malware characteristics.
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7. Discussion and findings

In this section, we reflect on the findings presented in the previous
section to recommend best practices and highlight areas for future
research.

7.1. Reshaping the cybersecurity landscape: The impact of AI on threat
hunting and cybercrime

The integration of AI into cybersecurity is revolutionizing the way
organizations detect threats and defend against cyberattacks. AI’s abil-
ity to analyze vast amounts of data with speed and precision offers
a game-changing advantage to cybersecurity teams. This capability is
particularly valuable in an era where the volume of data is exploding

and cyber threats are becoming increasingly sophisticated.
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Fig. 6. OpenAI’s voice engine threat classifications.

AI is also being utilized to empower cybersecurity professionals with
advanced tools for penetration testing, automating tasks that would
typically require significant manual effort. Such tools can simulate
attacks on a network to identify vulnerabilities before they can be
exploited by malicious actors.

The potential risks arise when OpenAI’s Voice Engine (OpenAI,
2024) marks a monumental stride in the field of artificial intelligence,
one that mirrors human vocal characteristics with astonishing precision
from merely a 15-s sample. This breakthrough is poised to revolu-
tionize sectors such as accessibility, enhancing the user experience for
those with visual impairments, and education, by offering personalized
learning experiences through voice interfaces. However, the flip side of
this innovation is the ushering in of considerable cybersecurity threats
that necessitate vigilant examination by both entities and individuals.
The potential for this technology to serve as a tool for accessibility
and educational advancements illustrates its transformative power, yet
it concurrently opens the door to a spectrum of cyber vulnerabilities
that could exploit the very essence of personal identity (i.e., voice
recognition).

Of the enumerated cyber risks, identity fraud, and impersonation
stand out, highlighting a future where voice duplication could compro-
mise the authenticity of personal interactions. Cybercriminals, armed
with the capability to accurately mimic voices, could bypass voice-
operated security systems or deceive individuals through social engi-
neering tactics, thus eroding trust in voice communication. Moreover,
the advent of the voice engine intensifies the threat of vishing scams,
enabling perpetrators to craft highly convincing deceitful narratives by
impersonating trusted figures. For example, Chief Information Officers
call the team to shut down a server for security reasons. The technol-
ogy’s misuse could extend to the realm of disinformation, where voice
replicas are utilized to fabricate news or spread malicious rumors, po-
tentially swaying public opinion and disrupting democratic processes.
Additionally, the sanctity of voice authentication systems is at risk,
as the technology could allow unauthorized access to sensitive infor-
mation, challenging the reliability of voice-based security measures.
Lastly, the ethical and legal quandaries posed by the unauthorized
use or creation of voice replicas beckon a thorough legal and moral
examination, underscoring the need for strict governance and consent
protocols in the deployment of such advanced AI capabilities. This
will elevate the role of threat hunters and incident response teams to
the next level, increasing the job’s difficulty. Fig. 6 shows the threat
classification of Open AI’s voice engine.

7.2. The critical role of hypothesis development in threat hunting

Central to effective threat hunting is the development of a robust
hypothesis at the outset of the research. This foundational step is
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critical, as it guides the systematic approach required to navigate the
vast and varied nature of cyber threats.

Challenges in Current Research Approaches:
A review of the existing literature reveals a concerning trend: many

research methodologies deprioritize hypothesis development in the
early stages of investigation. This oversight can severely impact the
efficacy of threat detection mechanisms. In the context of ransomware
attacks, for example, the importance of hypothesis-driven research
becomes evident. Effective threat hunting for ransomware necessitates
a focus on the entire lifecycle of the attack, from the initial dumping
of malicious code onto endpoints to the exploitation of vulnerabilities
via command-and-control (C2) protocols.

Towards an Autonomous Threat Hunting Mechanism: The de-
velopment of an autonomous threat hunting mechanism that can adapt
to new and evolving tactics without prior explicit knowledge repre-
sents the frontier of cybersecurity research. Such a system must be
underpinned by a robust hypothesis development process and capable
of learning from a wide array of adversarial documentation. This
approach is not only necessary for the advancement of threat detection
models but is also critical in ensuring the resilience of cybersecurity
defenses against the next generation of cyber threats.

8. Conclusion

Our comprehensive survey of 117 selected papers revealed signif-
icant insights and gaps in the academic literature on threat hunting.
While traditional cybersecurity measures remain fundamental, our re-
search highlights the critical role of threat hunting as a proactive
defense mechanism against sophisticated cyber threats. This paper
demonstrated that integrating AI-driven models and advanced machine
learning techniques into threat hunting processes offers substantial
advantages, enabling the early identification of potential threats before
they escalate into major incidents. Approaches incorporating both su-
pervised and unsupervised learning, as well as graph knowledge, have
distinct advantages in the cybersecurity arsenal.

Despite the promising potential of these approaches, several chal-
lenges persist. Our review highlighted the scarcity of high-quality
labeled data, the complexity of integrating multiple data sources, and
the rapid evolution of adversarial techniques. Furthermore, the need
for specialized expertise and standardized methodologies remains a
significant hurdle. Addressing these limitations is critical for advancing
cyber threat mitigation strategies, stressing the importance of contin-
uous innovation in threat hunting methodologies to confront modern
cyber threats effectively.

Our systematic review also emphasized the importance of
hypothesis-driven approaches and iterative detection methodologies.
We explored the distinction between threat hunting and anomaly
detection, clarifying the systematic processes essential for effective
threat hunting. We provide a comprehensive overview of threat hunting
practices through various threat hunting datasets, analysis of super-
vised and unsupervised machine learning approaches, and graph-based
and rule-based methods. More importantly, it included detailed tables,
figures, and comparisons to highlight each’s strengths and weaknesses.

In future work, we will explore deeper into the role of supervised
and unsupervised models in threat hunting. We will investigate the
development of standardized methodologies to ensure consistent and
reliable processes across the cybersecurity community, while also fo-
cusing on improving data quality and availability. Integrating diverse
data sources, such as network logs and threat intelligence feeds, will
enhance our ability to detect threats. Adapting to evolving threats
requires continuous innovation. This includes using emerging technolo-
gies such as quantum computing and advanced cryptography to refine
hypothesis-driven approaches. These advancements are crucial for de-
veloping robust threat hunting methodologies that counter modern
cyber threats.
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