This is the Author’s version of the paper published as:

Author: Woollard, Malcolm; Mannion, Warren; Lighton, David; Johns, Ian; Peter, O'Meara; Chris, Cotton; Mike, Smyth
Email: Malcolm.woollard@btinternet.com; pomeara@csu.edu.au
Year: 2007
Title: Use of the Airtraq laryngoscope in a model of difficult intubation by prehospital providers not previously trained in laryngoscopy
Journal Anaesthesia
Volume: 62
Pages: 1061-1065
URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2044.2007.05215.x
Abstract: This study evaluated the ability of prehospital providers who had no previous training in intubation, to use an Airtraq laryngoscope to intubate a manikin model of a Cormack and Lehane grade III / IV view. Volunteers attending the Australian College of Ambulance Professionals conference, Adelaide, in November 2006 received approximately 5 min of Airtraq training. First-time intubation success rate was 26 / 33 (79%) (95% CI 61–91%); oesophageal intubation rate was 0 / 33 (0%) (95% CI 0–11%); median time to intubation was 17 s (IQR 10–25 s (range 5–30 s)); and mediansubject-rated difficulty of use score was 21 out of a maximum of 100 (IQR 7.5–35.5 (range 1–65)). Pre-hospital providers without previous laryngoscopy training achieved high first-time intubation success rates when managing a model of a grade III / IV difficult intubation with an Airtraqlaryngoscope. Users evaluated it as easy to use and achieved intubation within an acceptable breath-to-breath interval.
Use of the Airtraq laryngoscope in a model of difficult intubation by pre-hospital providers not previously trained in laryngoscopy

M Woollard,¹,² W Mannion,³ D Lighton,¹ I Johns,³ P O’Meara,¹ C Cotton,⁴ M Smyth⁵

¹School of Biomedical Sciences, Charles Sturt University, Bathurst, New South Wales, Australia

²Faculty of Pre-hospital Care Research Unit, the James Cook University Hospital / University of Teesside, James Cook University Hospital, Academic Centre, Marton Road, Middlesbrough, TS4 3BW, UK

³Australian College of Ambulance Professionals New South Wales Branch, P.O. Box 547, Strawberry Hills, NSW 2012, Australia

⁴Australian College of Ambulance Professionals South Australia Branch, South Australia Ambulance Service, GPO Box 3, Adelaide, SA 5001, Australia
Use of the Airtraq laryngoscope in a model of difficult intubation by pre-hospital providers not previously trained in laryngoscopy

Summary

This study evaluated the ability of pre-hospital providers without previous intubation training to use an Airtraq laryngoscope to intubate a manikin model of a Cormack and Lehane grade III / IV view. Volunteers attending the Australian College of Ambulance Professionals conference, Adelaide, in November 2006 received approximately five minutes of Airtraq training.

First-time intubation success rate was 26/33 (79%) (95%CI 61 to 91%); oesophageal intubation rate was 0/33 (0%) (95%CI 0 to 11%); median time to intubation was 17 seconds (IQR 10 to 25 seconds [range 5 to 30 seconds]); and median subject-rated difficulty of use score was 21 (IQR 7.5 to 35.5 [range 1 to 65]).

Pre-hospital providers without previous laryngoscopy training achieved high first-time intubation success rates when managing a model of a grade III / IV difficult intubation with an Airtraq laryngoscope. Users evaluated it as easy to use and achieved intubation within an acceptable breath-to-breath interval.

Key words

Endotracheal intubation methods, Emergency Medical Technician, ambulances, laryngoscopes, prehospital emergency care
A recent literature review discussing pre-hospital intubation expressed concerns about “adverse events and errors, interaction with other important resuscitation interventions, and challenges in providing and maintaining procedural skill” and suggested that new strategies to improve airway management in this setting were required.[1]

The Airtraq laryngoscope was designed specifically to improve glottic views in the context of difficult intubation in the emergency setting. It is a disposable device that uses simple plastic prisms and lenses to allow indirect visualization of the laryngeal structures without having to achieve alignment of the oral, pharyngeal and laryngeal axes. The distal lens is heated to minimise misting and is adjacent to a light source. The user looks through a proximal lens (figure 1) which provides a view from the perspective of the endotracheal tube that is clipped to a slot in the side of the Airtraq (which acts as an insertion guide) before intubation (figure 2).

Figure 1: the Airtraq device (proximal lens)

Figure 2: the Airtraq device (lateral view)

Although limited research has been published concerning the Airtraq laryngoscope, this suggests that it may aid intubation in the hands of inexperienced providers. Forty novice medical students with no prior airway management experience achieved greater success rates and shorter duration of intubation attempts when using an Airtraq compared to a Macintosh laryngoscope, and it was noted that there was also reduced potential for dental trauma.[2] Skill acquisition with the Airtraq versus a standard Macintosh laryngoscope has also been compared in 25 anaesthetists, who achieved a shorter time to intubation with the former device (9.5 vs. 14.2 seconds).[3]
This study aimed to test the ability of the Airtraq to facilitate intubation in the pre-hospital setting under highly challenging circumstances. Consequently we invited pre-hospital providers without previous training and experience in laryngoscopy to attempt to manage a difficult intubation, as represented by a manikin model of a grade III / IV Cormack and Lehane view.[4]
Methods

Ethics approval and consent

Ethics approval to conduct this trial was obtained from the Ethics in Human Research Committee, Charles Sturt University. Potential volunteers were given an information sheet and a briefing by a researcher, with an opportunity to ask questions. Written informed consent was obtained prospectively from all subjects agreeing to participate in the study. Data was anonymised and information on the performance of individuals was not made available to anyone outside of the study team.

Study design

This prospective study sought volunteers from pre-hospital providers without previous training in laryngoscopy who were attending the Australian College of Ambulance Professionals conference in Adelaide, Australia, in November 2006.

During breaks in the conference presentations researchers manned a clearly marked stand in the trade hall. Potential subjects were given a handout to read that included a written and diagrammatic description of the technique for using the Airtraq and a study participant information sheet. A researcher subsequently demonstrated and explained use of the Airtraq on a one-to-one basis, and each volunteer was permitted a single practice attempt with the Airtraq.

For the purpose of data collection, subjects were asked to intubate a Laerdal Advanced Life Support Manikin (MegaCode Kelly, Laerdal Pty. Ltd, PO Box 52, Oakleigh, Victoria 3166, Australia). A Cormack and Lehane grade III or IV laryngoscopy view (epiglottis visible but no other glottic structures seen or no
structures seen, depending on individual practitioners’ skill, as assessed with a Macintosh laryngoscope) was produced by applying a cervical collar, strapping the manikin to a long spine board with the head immobilized, and inflating its tongue (figure 3).

Figure 3: manikin model of difficult intubation

Participants were limited to a single 30 second intubation attempt with the Airtraq and an 8.0mm cuffed tube. Success was defined as placement of an ET tube in the trachea within an interval of 30 seconds or less from immediately after the last ventilation with a bag-valve-mask to the start of the first ventilation via the ET tube. Correct positioning of the ET tube was confirmed by researchers.

Immediately after using the Airtraq subjects were asked to rate its difficulty of use by marking a 10cm line, with 0cm representing ‘very easy’ and 10cm representing ‘very hard’.

Outcome measures

Primary outcome measure:

- Proportion of subjects successfully intubating the trachea in one attempt within a breath to breath interval of less than 30 seconds

Secondary outcome measures:

- Proportion of oesophageal intubations
- Proportion of failed intubations
- Median time to intubation (breath-to-breath interval)
- Subject-rated difficulty of use score, using a visual analogue scale
We also collected data on subjects’ age and gender.

Outcome variables were recorded by a researcher and documented immediately the intubation attempt was completed.

Statistical analysis

95% confidence intervals for proportions were calculated using StatsDirect software (version 2.4.4, StatsDirect Ltd, UK). Data were entered into the statistical software package SPSS (version 10.5, SPSS Inc., Chicago, IL, USA) to calculate medians, ranges, and inter-quartile ranges.

Sample size

Based on previous research (Woollard et al, unpublished data) we calculated that a minimum of 23 subjects would be required to detect a 44% first-time intubation success rate with the Airtraq with a 95% confidence interval (CI) of 23 to 66%. However, this calculation was based on data obtained in a trial involving student paramedics with eight hours of intubation training, and we felt that pre-hospital providers without any previous education in laryngoscopy may have substantially lower success rates. Consequently we aimed to recruit all subjects volunteering to participate in the current study and meeting the inclusion criteria.
Results

Demographics

Thirty-three subjects volunteered to take part in the study, of which 18 (55%) were female. The median age of study participants was 35 years (range 18 to 65, interquartile range 28 to 43 years). Three of the participants were nurses; 29 were ambulance personnel, and one had no clinical training whatsoever.

Exact time to intubation was not documented for 3/26 of the successful attempts, although it was confirmed that for these cases the tube was correctly sited in 30 seconds or less.

Main results

Table 1 reports the main findings.

The median time to intubation was 17 seconds (IQR 10 to 25 seconds [range 5 to 30 seconds]), and the median difficulty of use visual analogue score for the Airtraq was 21 (IQR 7.5 to 35.5 [range 1 to 65]) (higher values = more difficult).
Discussion

This study indicates that, even when used by pre-hospital providers with no previous training in laryngoscopy, the Airtraq laryngoscope can facilitate high first-time endotracheal intubation success rates in a manikin model of a difficult airway.

Some studies of paramedics’ endotracheal intubation (ETI) skills have presented success rates as high as 98 to 99%.[5-6] The ability of Emergency Medical Technicians without other advanced life support skills to learn to intubate has also been investigated, reporting a success rate of 30/32 in patients in the pre-hospital setting (94%, 95% CI 80 to 98%) with no oesophageal intubations occurring.[7] Other research has been less positive, however, reporting an incidence of misplaced endotracheal tubes of between 6 and 25%,[8-9] with between 67 and 75% of these being in the oesophagus.[9-10] A prospective case series of 1,272 cardiac arrests from 42 different ambulance services over an 18 month period reported a first-time ETI success rate of 70%.[11] Research comparing paramedics’ endotracheal intubation (ETI) success rates in 52 patients in a UK anaesthetic department reported a cumulative success rate of only 71% after two ETI attempts: however, this fell to zero in the presence of a Cormack and Lehane grade III or IV view.[12] The intubation success rate of 79% in our study of pre-hospital providers with no training in traditional laryngoscopy and only five minutes with the Airtraq compares very favourably with these findings, as does the absence of ET tubes incorrectly placed in the oesophagus. Most importantly, it should be remembered that all of the ‘cases’ in our investigation presented with a grade III / IV view – in the patient studies described above, however, it seems reasonable to suggest that the relevant populations
probably had a more typical distribution of Cormack and Lehane scores, with most being grade II or better.

Concerns about the limited abilities of paramedics and others to successfully and safely intubate patients have led to suggestions that this skill should be at best reviewed and at worst withdrawn altogether.[1,12] Despite this, intubation remains the gold standard of airway care and has been shown to improve the probability of survival from out-of-hospital cardiac arrest when used sufficiently early.[13]

Limitations

Recruiting volunteers from attendees of a clinically-focused conference risks a sampling bias as this population is arguably more likely to consist of practitioners with a greater commitment to their on-going education. They may, therefore, be more knowledgeable about airway anatomy and management than members of the pre-hospital profession who did not attend and who may have achieved greater or lesser success with the Airtraq. The ability of manikin models to predict the performance of devices in patients is uncertain, and studies using this method do not obviate the need for clinical trials.

Conclusions

Further research is required to determine if the findings of this trial are representative of a similar benefit in patients with a range of different grades of view of the glottic structures. The authors are not suggesting that basic-life support-level pre-hospital providers may now be safely given five minutes of instruction before being permitted to intubate patients with the Airtraq in the pre-hospital setting. However, our study results suggest that this new laryngoscope can facilitate high rates of successful
intubation in particularly challenging circumstances represented by a combination of practitioners with only five minutes laryngoscopy training presented with a model of a Cormack and Lehane grade III / IV view. The Airtraq may, therefore, offer an effective tool to improve first-time intubation success rates and reduce the incidence of misplaced ET tubes when used by trained advanced life support providers working in the testing environment of the pre-hospital setting. Clinical trials are required to confirm this hypothesis.

Potential conflict of interest

Malcolm Woollard undertook this research whilst on a scholarship funded by Charles Sturt University and Australian College of Ambulance Professionals. The Airtraq laryngoscopes used during the study were provided without charge by Prodol, the manufacturers of the device.

None of the study sponsors had any role in the study design, collection, analysis or interpretation of data; or in the writing of the manuscript and in the decision to submit it for publication.

The authors are unaware of any other potential conflict of interest.

Acknowledgements

The research team thanks all of the subjects who volunteered to participate in this study; and is most grateful for the support of the Australian College of Ambulance Professionals (New South Wales and South Australia branches) and Prodol Meditec SA, Las Arenas, Vizcaya, Spain. Without them this study would not have been possible.
References

Legends for figures

Figure 1: the Airtraq device (proximal lens)

Figure 2: the Airtraq device (lateral view)

Figure 3: manikin model of difficult intubation
<table>
<thead>
<tr>
<th></th>
<th>Proportion</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET tube correctly sited within 30 seconds</td>
<td>26/33 (79%, 95% CI 61 to 91%)</td>
<td></td>
</tr>
<tr>
<td>Oesophageal intubation rate</td>
<td>0/33 (0%, 95% CI 0 to 11%)</td>
<td></td>
</tr>
<tr>
<td>Failure rate</td>
<td>7/33 (21%, 95% CI 9 to 39%)</td>
<td></td>
</tr>
</tbody>
</table>