
CSU Research Output
http://researchoutput.csu.edu.au

This is the Author’s version of the paper published as:

Author: Huang, Xiaodi; Lei, W; Gao, Junbin; Sajeev, A S M
Email address:- jbgao@csu.edu.au
Year:- 2007
Title: A new algorithm for removing node overlapping in graph visualization
Journal International Journal of Information Sciences
Volume: 177
Issue: If applicable
Pages: pp2821-2844
ISSN: 0020-0255
URL: http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0C-4N43RYB-
5&_user=1588505&_coverDate=07%2F15%2F2007&_rdoc=2&_fmt=summary&_orig=browse
&_srch=doc-
info(%23toc%235643%232007%23998229985%23651254%23FLA%23display%23Volume)&
_cdi=5643&_sort=d&_docanchor=&_ct=12&_acct=C000053903&_version=1&_urlVersion=0&
_userid=1588505&md5=cd04b0273bc1c71b4132530293498458
Abstract: Techniques for drawing graphs have proven successful in producing good layouts
of undirected graphs. When nodes must be labeled however, the problem of overlapping
nodes arises, particularly in dynamic graph visualization. Providing a formal description of this
problem, this paper presents a new approach called the Force-Transfer algorithm that
removes node overlaps. Compared to other methods, our algorithm is usually able to achieve
a compact adjusted layout within a reasonable running time.

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 2

A New Algorithm for Removing Node Overlapping in Graph Visualization

Xiaodi Huang a, Wei Lai b, A. S. M. Sajeev a , Junbin Gao c

a Department of Mathematics, Statistics and Computer Science, The University of New England, Australia
b School of Information Technology, Swinburne University of Technology, Australia

C School of Information Technology, Charles Sturt University, Australia

Abstract: Techniques for drawing graphs have proven successful in producing good layouts of undirected graphs.

When nodes must be labeled, however, the problem of overlapping nodes arises, particularly in the dynamic graph

visualization. Providing a formal description of this problem, this paper presents a new approach called the

Force-Transfer algorithm that removes node overlaps. Compared to other methods, our algorithm is able to

achieve a compact adjusted layout with reasonable running time.

Keywords: Graph Layout; Overlapping Nodes; Force Transfer; Layout Adjustment

1. Introduction
In the field of graph visualization, nodes in a graph represent objects or entities, which often have

distinct labels as their identifiers. These labels in a drawing may be in the form of text, digits, or even

images. Unlike most of existing drawing algorithms, nodes should be drawn as rectangles that have

enough areas to display labels, rather than as abstract points with almost no size. UML diagrams in

CASE tools, for example, are labeled graphs. The problem of node-overlapping may arise while

displaying such graphs by using traditional algorithms. The resulting layout contains overlapping

nodes, which destroy the layout aesthetics, an underlying purpose of graph layout. This is because most

of these algorithms do not take into account the node size. The need thus arises for removing node-

overlapping. More importantly, in a dynamic situation where the changes of a graph often happen such

as enlargement/shrinkage of sub-graphs and addition/deletion of nodes, its layout should be adjusted

accordingly. While eliminating node overlaps, the adjustment of an original layout should be kept to a

minimum. The techniques for removing node-overlapping can directly be applied to reposition

overlapping windows in multi-window applications, to avoid the overlaps of compound nodes in graph

drawing [22，23], as well as to layout information display for small devices such as mobile phones and

PDAs [16].

Three typical kinds of approaches to removing node-overlapping have been reported in the literature:

uniform scaling [4, 7], constrained optimization [2, 5, 6], and force-based algorithms [1, 4, 12, 14].

Preserving the original structure of a graph, a straightforward approach called uniform scaling avoids

node overlaps by uniformly scaling the overlapping layout. The layout may, however, be expanded

unnecessarily. The adjusted layout thus tends to be too large. The constrained optimization approach

makes use of an objective function, which consists of a quadratic expression about the differences

between the initial and adjusted coordinates of nodes. An optimal solution to such a function is then

provided, subject to a set of constraints that ensure no node-overlapping [5, 6]. These kinds of

approaches can “give better layout than the force scan algorithm, although they are slower” [5]. The

force-based algorithm includes cluster busting in an anchored graph drawing [14], as well as the force-

scan algorithm (FSA) [1, 4, 12]. The procedure of cluster busting is iterative in that the nodes in a

graph are iteratively relocated in accordance with measurable criteria. To improve the distribution of

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 3

nodes (cluster busting), these criteria minimize the differences between the original layout and adjusted

layout (anchored graph drawing). Also, these algorithms have to run several iterations so as to achieve

a better-adjusted layout. Compared to uniform scaling, FSA produces a compact layout, preserving the

mental map [12, 21] of an original graph. To make a graph layout as compact as possible, a variant of

FSA [4] allows an additional pull force between two nodes. Considering the node size in the original

spring embedded algorithm, D. Harel et al. [17] recently proposed a modified spring method that

prevents node-overlapping at the beginning of a layout. Other related work includes the SHriMp

algorithm [15] where nodes uniformly give up screen space to allow a node of interest to grow. These

nodes are appropriately scaled to fit inside the screen.

Using a heuristic method, our new approach called the Force-Transfer Algorithm (FTA)

approximates a global, optimal adjustment with minimal local changes.

The major contributions of this paper lie in: (1) formalizing the node-overlapping problem in graph

visualization; (2) proposing a new approach to removing node-overlapping; (3) providing a scalable

version of FTA; (4) presenting the properties of FTA; and (5) implementing the proposed algorithm in

a prototype called PGD (Practical Graph Drawing).

The remainder of this paper is organized as follows. The following section presents a formal

description of removing node-overlaps problem. Section 3 describes FTA, followed by presenting its

scalable version. The properties of FTA and their proofs are given in Section 5. Section 6 compares

FTA to FSA. Section 7 reports the empirical results on a number of graph layouts with overlapping

nodes, by applying both FTA and FSA. The potential applications are briefly described in Section 8.

Finally, the conclusion is given in Section 9.

2. A Formal Description of the Removing Node -Overlapping Problem

We assume that an overlapping graph G = (V, E) has the set of nodes denoted by V = {1, 2, ..., |V|},

and the set of edges by E⊆ V× V. Let (x0
q, y0

q) denote the centre of node q (i.e., the index of a node is

q) with a rectangular bounding box of width wq and height hq, and denote (x1
q, y1

q), (x2
q, y1

q), (x2
q, y2

q)

and (x1
q, y2

q) as its four corner coordinates (See node q in Figure 1). Also, we suppose that the nodes in

G are sorted by their x1
i and then by y1

i in the horizontal and vertical directions, respectively, where i=1,

2, …, |V|, such as the coordinates of the upper left corner (x1
q, y1

q) of node q.

With the above preliminaries, we provide definitions and formalize the node-overlapping problem,

starting by identifying all overlapping nodes of a node in a given graph.

Definition 1 (Neighbor node). Two nodes i and j in G with the following expression being true:

dhhyy

ordwwxx

jiji

jiji

++<−

++<−

2/)(||

2/)(||
00

00

 (1)

are called the Neighbor node of each other denoted by N (i, j), where the gap d is a minimum,

horizontal distance between nodes i and j that makes them un-overlapped.

To simplify notation, the gap d will be omitted in the rest of this paper. It is obvious that a neighbor

relation is reflective and symmetric.

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 4

Definition 2 (Neighbor nodes). A set of nodes that overlap with node q directly. We have NN (q)

= },),(|{ VqiqiNi ∈∧ where NN (q) denotes the neighbor nodes of node q.

Fig.1. Neighbor nodes

Considering the example shown in Figure 1, we have NN (q) = {h, j, k}. For describing our algorithm

later, the left, right, up and down neighbor nodes of node q are defined by:

)}(|{)(11 qNNixxiqLNN qi ∈∧<= ,)}(|{)(11 qNNixxiqRNN qi ∈∧≥=

)}(|{)(11 qNNiyyiqUNN qi ∈∧<= , and)}(|{)(11 qNNiyyiqDNN qi ∈∧≥=

Again, we have LNN (q) = {h}, RNN (q) = {j, k}, UNN (q) = Ø, and DNN (q) = {h, j, k} for the graph

in Figure 1.The neighbors relations on a set of NN (q) is not transitive, or symmetric, but reflective.
Definition 3 (Transfer neighbor nodes). A set of nodes that overlap with node q both directly and

indirectly; that is, all nodes around q in which every node overlaps with at least one other node.

The transfer neighbor nodes of a particular node, denoted by TNN (q), are identified as follows: find

the neighbor nodes of node q, i.e., NN (q), and then all nodes in NN (q) in turn find their neighbor

nodes and so on, until a particular node with no neighbor nodes is encountered. A TNN(q) is defined

recursively in this way:

i=1: UU }{)()()(
)(

qqNNjNNqTNN
qNNj

1 −⎟
⎠
⎞

⎜
⎝
⎛=

∈

i>1: }{)()()(
)(

qqTNNjNNqTNN
1-i

1-iqTNNj
i −⎟

⎠
⎞

⎜
⎝
⎛=

∈
UU

We have iqTNNqTNN)()(= where |}|,,1{ Vi L∈ . There exist |}|,,2{ Vi L∈ , ik ≥ , and

|}|,,2{ Vk L∈ such that the equation TNN (q)k = TNN(q)k-1 always holds true. The TNN (q)i formed by

the i-th iterative expansion is a subset of TNN (q) where }1||,,1{ −∈ Vi L .

Again referring to Figure 1, we have:

}{}{}{
)()()()(

lk,j,h,qkj,h,
kNNjNNhNNqTNN 1

=−∪
∪∪=

},,,,{}{}{
)()()()()(

mlkjhqlk,j,h,
lNNkNNjNNhNNqTNN 2

=−∪
∪∪∪=

The transfer neighbor nodes of node q are eventually obtained as TNN (q) = {h, j, k, l, m}. In a similar

way, we are able to define left, right, up and down transfer neighbor nodes, such as

)}(|{)(11 qTNNixxiqTLNN qi ∈∧<= , and)}(|{)(11 qTNNixxiqTRNN qi ∈∧≥= . For instance, we have TLNN (q)

= {h}, TRNN (q) = {j, k, l, m}, TUNN (q) =φ , and TDNN (q) = {h, j, k, l, m} in Figure 1.

The use of the following theorem will significantly reduce the computational complexity of the

proposed algorithm.

Theorem 1 Given a graph layout with overlapping nodes and ji ≠ , the following claims hold true.

y

x

(x2
q, y1

q)

l

j

k h

(x1
q, y1

q)

(x2
q, y2

q) (x1
q, y2

q)

q
n

m

(x0
v, y0

v)

(x0
q, y0

q)

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 5

1. If φ≠∩)()(jNNiTNN , then)()(jNNiTNN ⊃

2. The transfer neighbor relation on a set of TNN(q) is an equivalence relation.

Proof. 1. φ≠∩)()(jNNiTNN holds, implying at least one node k in both TNN (i) and NN (j). We

have)(iTNNu∈∃ and)(jNNw∈∃ such that both N (k, u) and N (k, w) are true. That is, node k acts as a

bridge node to form a neighbor node with one node in TNN (i) and with another in NN (j). This

indicates that these three nodes are neighbor nodes. According to Definitions 2 and 3, the claim is

immediately correct.

2. We show the transfer neighbor relation (R) is reflective, symmetric and transitive. It is obvious that

the relation is reflective. For the symmetric property, we show that i R j implies j R i. That is,

if)(jTNNi∈ , then)()(jTNNiTNN = . Without loss of generality, we suppose)()(jTNNiTNN ⊂ , then

rewrite it as TNN (j) = TNN (i) + TNN (k) (1), where φ≠)(kTNN . It follows that there must be two

nodes)(iTNNu∈ and)(kTNNw∈ such that u and w is a neighbor node namely N (u, w). Otherwise

they cannot be included in TNN (j). According to the definition of transfer neighbor nodes and the fact

that N (u, w) is true, TNN (k) can be viewed as part of TNN (i). This is because the neighbor nodes u

and w link them together. On the other hand, given)(jTNNi∈ there must exist a node)(jTNNv ∈

such that N (i, v) is true. For the same reason, TNN (j) can also be treated as part of TNN (i). As a result,

we have TNN (i) = TNN (j) + TNN (k) +S (2) where S is a set. From (1) and (2) we have

φ=+ SkTNN)(which means φ=)(kTNN . This results in a contradiction. It is readily shown that the

transfer neighbor relation is transitive, meaning that)(jTNNi∈ and)(kTNNj∈ deduce)(kTNNi∈ .

The claim is therefore correct. □

Our algorithm is a force-based one, sequentially applying the forces within each scan. We need a

particular node in a graph to start the scan.

Definition 4 (Seed node). A node s or a dummy node in a graph from which to start applying the first

force in an adjustment. As a dummy node, i.e., a point without size, it is a referring point used as the

benchmark of a scan.

One important issue related to the problem of removing node-overlaps is how to measure the quality

of an adjustment. In the following we present three measures to quantify the degree of an adjustment.

A straightforward way is to count the number of nodes that has been repositioned after an

adjustment, denoted by ||/1 Vn=λ , where n is the number of adjusted nodes.

The second measure quantifies the degree of the destroyed mental map after an adjustment. The

preservation of orthogonal ordering can be measured by the Kendall’s tau distance [18, 19] that

captures the number of disagreements between two rankings. In the case of graph layout, the rankings

reflect the respective sequence of node relative positions in original and adjusted layouts denoted by V

and 'V . We define a mismatched set)',(VVν as follows:

))}'()'()()(())'()'()()((

))'()'()()(())'()'()()((|),{()',(
11111111

11111111

VyVyVyVyVyVyVyVy

VxVxVxVxVxVxVxVxVjiVV

jijijiji

jijjjiji

<∧>∨<∧>∨

>∧<∨<∧>∈=ν

In other words, the mismatched set contains a set of node pairs whose order has been changed in an

adjusted layout. An indicator function is thereby given by

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 6

⎩
⎨
⎧ ∈

=
otherwise

VVi, j if
ji

0
)',()(1

),(
ν

τ

The degree of orthogonal ordering changes is defined as

∑
∈−

=
Vji

ji
VV),(

2),(
)1|(|||

2 τλ

It is normalized by |V| (|V|-1)/2, the maximum number of mismatched node pairs, so that it takes a value

in [0, 1].

We are concerned also with the change areas of bounding rectangle after an adjustment. This is

measured by '/13 WW−=λ , where W denotes the minimal area of bounding rectangle of an original

graph layout, and W’ the area of the adjusted layout.

In fact, a compact adjustment is the primary goal of the removing node-overlaps problem. We

therefore introduce another definition to measure the adjustment degree with respect to the adjusted

distances.

Definition 5 (Cost function). A function used to measure the degree of an adjustment. Its value equals

the sum of adjusted distances over all nodes in V after a layout adjustment:

)(),,(ij
V i V j

ijcost y x s'V Vf Δ+Δ=∑∑
∈ ∈

where ijxΔ and ijyΔ denote the moved distances of node j in the x and y directions caused by the

applied force ijf . It is clear that this function is related to the seed node s.

By using an aggregation function, the combination of the number of adjusted nodes, orthogonal

ordering, and the cost function yields the following measure that quantifies the degree of a layout

adjustment.

)),',(,,,(),',(321 sVVffsVV tcosλλλη =

As an example, the aggregation function f (.) uses the following simple one:

)()
'

1(
2/)1|(|||

),(

||
),',(43

),(
21 ij

Vi Vj
ij

Vji yxw
W
Ww

VV

ji
w

V
nwsVV Δ+Δ+−+

−
+= ∑ ∑

∑

∈ ∈

∈
τ

η

where w1 + w2+ w3 + w4 is 1. For simplicity, we may assign equal importance to the three measures

using equal weight values.

With the above preliminaries, we are ready to formalize the problem of removing node-overlaps.

Definition 6 (Removing Node Overlap Problem) (RNOP). Given a graph G with an overlapping node

layout, an adjustment for removing node overlaps should satisfy the following conditions:

1. ,qNN φ=)(for Vq ∈∀

2．)},',(min{(sVVη

In the following, we show that the RNOP is NP.

Theorem 2 RNOP ∈ NP.

Proof. we can solve RNOP with a nondeterministic algorithm. For all possible adjustments of a given

overlapping graph, we compute the value of),,(sV' V η to see whether it satisfies the requirements

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 7

given in Definition 6. It is obvious that the time complexity for checking whether or not any two nodes

are overlapping is polynomial. □

Furthermore, RNOP is NP-complete. Computing the optimal Kendall tau aggregation, which serves

as one component of our measure of an adjustment degree, is NP complete [19]. Since RNOP is an NP-

complete problem, it is unlikely to find a good deterministic algorithm with polynomial running time.

No complete solution to the problem has been reported in the literature. We resort to a heuristic

approximation algorithm. As mentioned earlier, the minimization of adjusted distances is of primary

importance in an adjustment. Relaxing other constraints, we present an algorithm that approximately

minimizes the cost function.

3. Force-Transfer Algorithm

In this section, we present a new algorithm, called the Force-transfer algorithm, based on answering

three related, fundamental questions.

The main idea of FTA is to apply a ‘force’ to one of two overlapping nodes so that this force pushes

one node away from another. For all overlapping nodes in a graph, applying forces is conducted one by

one within two scans: one left-to-right scan, and another top-to-bottom scan. As a result, some nodes

are moved to avoid overlaps in either the horizontal or vertical direction. This scheme raises three

issues: (1) how great a force should be; (2) in which way an applied force is transferred to other nodes;

and (3) where to start with the first force. The answers that follow to these questions make a distinction

between FTA and the widely used FSA. First, a minimum force between two overlapping nodes in

FTA is applied so that a local adjustment is optimized. Second, the force is restrictedly transferred to a

dynamic sub-graph that is a group of overlapping nodes. It is likely that a node does not overlap with

any node in a sub-graph, but does with at least one of them after an adjustment. The nodes in the sub-

graph are therefore updated iteratively during the scan. An adjustment will process until all sub-graphs

including overlaps no longer exist in the final layout. It should be noted that a node with the initial

applied force, called the seed node in FTA, can be any node of a graph.
We take the overlapping layout in Figure 1 as an example to illustrate our algorithm.

• Start by selecting node h as the starting point of the x and y direction scans.

• The force hqf is applied to node q in order to separate it from its first overlapping node h, and is

then transferred to the right nodes. This transferred force makes every node in the sub-graph

consisting of nodes q, j, k, l and m move to the right at a distance that equals its magnitude.

• The node j, which overlaps with node q, is then processed. The fact that its horizontal

overlapping distance is greater than the vertical one leads to postponing the reposition in the y

scan.

• Next the applied force qkf causes nodes k, l and m to move to the right. Two following

forces klf and lmf push nodes l and m, and then node m to the right, respectively.

• During this horizontal scan, node l may overlap with node n. For example, the force klf pushes

node l such that it overlaps with node n. That is, a sub-graph is dynamically formed including

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 8

nodes h, q, j, k, l, m and a new member of node n. In this case, the subsequent force lnf will make

node n move to the right.

• The x scan ends by applying lmf if the above case does not happen, and then the y scan starts

where the qjf pushes node j down.

 Calculation of Forces

In this section, we provide a way of calculating the minimum applied force to separate two overlapping

nodes.

According to Definition 1, two nodes i and j ∈V are separated such that the following equation holds

true:

2/)(||

2/)(||

ji
0
j

0
i

ji
0
j

0
i

hhyy

orwwxx

+≥−

+≥−
 (1)

Consider a simple case of two overlapping nodes in Figure 2(a). With node i remaining unchanged, a

force on node j can randomly be applied from anywhere to eliminate the overlap. The orthogonal

projection of this force, however, must push j at a distance at least either ijxΔ to the right/left or ijyΔ

down/up. FTA initially calculates the orthogonally overlapping distances between nodes i and j:

||2/)(

}{|min
,:),(

0
j

0
iji

1
i

2
j

1
j

2
iVj ij iNij

xxww

|xx||,xxx

−−+=

−−=Δ
∈ (2)

|yy|hh

|y-yyy|y
0
j

0
iji

1
i

2
j

1
j

2
iV j i j iNij

−−+=

−=Δ
∈

2/)(

}||,{min
,:),((3)

With the minimum magnitude of ijxΔ and ijyΔ , an applied “force” pushes j away from i:

},{min||
,:),(ijijVji j iNij yxf ΔΔ=

∈

Considering the direction of the force, we rewrite the above equation as:

⎪
⎩

⎪
⎨

⎧
∧>
∧≤

=
othwersie

ji,NΔyΔx if Δy-
ji,NΔyΔx if Δx-

ijijij
p

ijijij
p

ij

0
)()()1(
)()()1(

j
i

f (4)

where

⎩
⎨
⎧

≥∧≥∨≥∧≥
<∧<∨<∧<

=
)()(0
)()(1

1
s

1
j

1
s

1
i

1
s

1
j

1
s

1
i

1
s

1
j

1
s

1
i

1
s

1
j

1
s

1
i

yyyyxxxxif
yyyyxxxxif

p

and i and j are unit vectors in the x and y directions respectively. For the graph shown in Figure 2 (b),

the applied force is chosen such that it has ij
x

ij xf Δ= and 0f y
ij = as its x and y projections. This is

because of different overlapping distances in the two directions (ijij yx Δ<Δ). In contrast, the fact that

the graph in Figure 2(d) has ijij yx Δ>Δ leads to using ij
y

ij yf Δ= and 0f x
ij = instead.

x

ijyΔ ijxΔ (x0

i, y0
i)

(x0
j, y0

j)

i
j

y

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 9

(a) Overlap distances

(b) Overlap graph 1 (c) Non-overlap graph 1

(d) Overlap graph 2 (e) Non-overlap graphs 2

Fig.2. Overlap calculation

By applying the above forces x
ijf and y

ijf to the respective graphs in Figures 2 (b) and (d), the resulting

layouts are obtained as shown in Figures 2 (c) and (e). Sequentially computing the orthogonal overlap

distance of every pair of neighbor nodes in a graph, the four scans start from the seed node to those

nodes located at its right, left, above, and below directions.

 Transfer of Forces

As stated before, our approach sequentially conducts four orthogonal scans beginning with the seed

node. Using the right scan as an example, we look at the way in which the force applied to a node is

transferred to other nodes.

It is likely that an applied force on a particular node affects other subsequent nodes in the scan

direction. In other words, each affected node is also moved by the same distance as does this node,

receiving the equivalent force. After an adjustment, the moved distance of a node is determined by its

own applied force, if any, as well as the transferred forces from other nodes. The propagation of an

applied force on a node is, however, conditional on the overlapping pattern.

A group of nodes overlapping with each other, as mentioned before, is thought of as the transfer

neighbor nodes of a node using Definition 3. The applied force on a node is sequentially transferred to

all nodes in the right transfer neighbor nodes of this node. Formally, given i

and)(qTRNNj ∈ and ji < , the x projection of an applied force x
ijf between nodes i and j creates an

equivalent force on other nodes to the right, namely)(qTRNNk ∈ and jk ≥ . A node k obtains the

aggregate forces that are individually applied to its preceding nodes included in TRNN(q). After

removing the overlaps among nodes between nodes i and k in TRNN(q), the total force on the node k is

given by ∑
<=

=
k

nmi

x
mn

x
k fF . It is easy to see that the rightmost node within a group of overlapping nodes

moves the greatest distance.

A transferred force relocates all subsequent nodes within the set of TRNN (q), thereby allowing some

other nodes in a graph to turn into new members in some cases. In other words, the TRNN (q) is

dynamic in that it accepts as its new member a node that is not previously included. This happens in a

i j i j

i

j

i

j

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 10

situation where the gap between two nodes is reduced to a certain extent, while nodes in TRNN (q) are

being repositioned.

 Determination of Seed Node

From the previous description, we know that the seed node plays an important role in our approach. A

seed node is chosen in such a way that it minimizes the value of the cost function. As mentioned before,

RNOP can be viewed as an optimization problem. This means the minimization of the objective

function)',(s,VVf
cost

, subject to removing all the overlapping in a graph. Many methods may be employed

to find the solution such as Simulated Annealing [8], Genetic algorithm [9], and Tabu Search [10, 11].

In order to approximate a global optimization, these algorithms escape from being trapped in local

minima by different ways. Applying those approaches to RNOP, an optimal point may be found as the

centre of a seed node. In the case of the point not being inside any node in V, it is treated as a dummy

node. Determining this optimal point is, however, a time-consuming process by means of these

approaches. Our experiments have shown that in most cases, the choice of the leftmost node as the seed

node is able to produce a better layout, except for symmetric overlapping layouts in which the centre

nodes of the graphs should be used instead.

Despite the fact that there are many optimal methods for finding an optimal seed node, it is too slow

to find it. In fact, it is not necessary to determine an accurate position of the seed node, since our

approach provides only an approximate minimization of an adjustment. In the following we present a

heuristics that seeks a seed node from an overlapping graph layout. The basic idea of this approach is to

estimate the central location of all overlapping nodes according to their distribution.

We impose a window with a minimal size that covers all overlapping nodes of a graph layout. Given

that the coordinates of the window centre is (x0, y0), we have the seed node (xs, ys) as follows.

Fig.3. Determination of seed node

n

xx
x ijij yxjiN

ji
p

s 2

)()1(
:),(

11∑
Δ≤Δ

+−
= , and

n

yy
y ijij yxjiN

ji
p

s 2

)()1(
:),(

11∑
Δ>Δ

+−
=

where
⎩
⎨
⎧

>>
≤≤

=
0

1
0

1
0

1
0

1

0
)2/()2/(1

yyorxxif
hyyorwxxif

p
ii

ii ,)}('|min{ iRNNjj'j ∈= , and n is the number of pairs of

overlapping nodes.

The coordinates of overlapping nodes on the left of the window centre are negative whereas those on

the right are positive in the above equation. As an example shown in Figure 3, the coordinates of first

(x0, y0)
h

w

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 11

two nodes are negative whilst the rest three ones are positive in the calculation. Also note that n equals

3.

Another useful variant of FTA utilizes multiple seed nodes rather than one seed node within a graph.

In general, a given graph layout varies in the distribution of overlapping-node locations. Based on this

fact, we assign the respective seed node in several areas surrounded by densely overlapping nodes. We

will give this detailed variant of FTA in Section 4.

 Pseudo-Code of Force-Transfer Algorithm

In the following pseudo-code, given G = (V, E, s), let x1
i denote the upper left corner x coordinates of

nodes, where |}|,,1{ Vi L∈ , and s the seed node. The horizontal transfer is carried out in two

directions, namely from the seed node to the right nodes, and then from the seed node to the left nodes.

In the following we use the former as an example to show the algorithm.

Right Horizontal Transfer:

Input: A graph G layout and a seed node s

Output: An adjusted graph layout where all node overlaps on the right side of the seed node are

removed if their vertical overlapping distances exceed their horizontal ones
i ← s

Find_ RNN (G, s)

Find_TRNN(G, s)

while i <|V| {right horizontal scan}

if TRNN (i) ≠ φ then

}{min
)('

j'j
iRNNj∈

=

12
ji

x
ij xxf −=

 |}||,min{| 2112
jiji

y
ij yyyyf −−=

 |}||,min{| y
ij

x
ij ff←δ

 if x
ijf=δ then

 // Right horizontal transfer

 for each)(iTRNNj∈ do

 dxx jj ++= δ00

end for

 end if

 end if

 //update TRNN

 i← i+1

 if N(i, q) is true and)(iTRNNVq −∈ then

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 12

 TRNN(i)= TRNN(i)+{q}

 endif

end {Right horizontal scan}

// Find the right neighbor nodes

Find_RNN (G, s) {

 for i=s to |V|-1

 RNN(i)={i}

for j=s+1 to |V|

 if N(i, j) is true then

 RNN (i) = RNN (i) + {j}

 endif

 endfor

 endfor

}

// Find the right transfer neighbor nodes

Find_TRNN(G, s) {

 i=1

 do

for j=i+1 to |V|

 if φ≠∩)()(jRNNiTRNN then

 //According to Theorem 1

)()()(jRNNiTRNNiTRNN ∪=

end if

end for

 i=i+1

 if)1(−∈ iTNNi then

 //According to Theorem 1

)1()(−= iTRNNiTRNN

 else if φ≠)(iRNN

then TRNN(i)= RNN(i)

 end if

 end if

 while 1|| −≤ Vi

}

The main challenge in determining the TNNs of all nodes for the above algorithm is that the number of

TNNs may increase exponentially with the number of nodes in a given graph, particularly for large

graph, making exhaustive approaches infeasible. To overcome this difficulty, we use Theorem 1, and a

simple and powerful principle: the n-TNN(q) comes only from (n−1)-TNN(q), where n is the cardinality

of a TNN set. Our approach has three-step procedure: (1) find all pairs of two overlapping nodes which

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 13

have a neighbor relation; that is, 1-TNN ; (2) recursively generate n-TNN from the (n-1)-TNN sets; and

(3) iteratively execute Step (2) until no larger TNN can be formed.

Consider the example in Figure 1. We first find 1-TNN(q) as {h, q}, { q, j },{q, k}, {k, l},{l, m}, and

then generate all TNNs by following the sequence{h, q}, {q, j}, {q, k}, {k, l},{l, m} {h, q, j}, { j, q,

k}, { q, k, l }, { k, l, m} {h, q, j, k}, {j, q, k, l},{q, k, l, m} {h, q, j, k, l}, {q, j, k, l, m} {h, q, j, k, l,

m }.

 FTA consists of the above horizontal scan followed by a similar vertical scan. Overall, the force

transfer starts from the seed node, and proceeds to other nodes in four orthogonal directions. The main

FTA algorithm is shown as follows:

FTA algorithm

Input: A graph G layout

Output: An adjusted layout without overlapping nodes

Sort all the nodes according to their x1
i coordinates

Find a node or use the leftmost node as the seed node s

Right Horizontal Transfer (G, s)

Left Horizontal Transfer (G, s)

Up Vertical Transfer (G, s)

Down Vertical Transfer (G, s)

4. Scalability of FTA

The above version of FTA cannot effectively handle a graph with a large number of overlapping nodes.

This problem has become particularly important in the case of a large, dynamic graph adjustment. In

the following we provide new versions of FTA. The idea is to apply FTA to a sequence of graphs at

different abstract levels, respectively. These abstract graphs have much smaller number of overlapping

nodes than the original one. This approach starts with grouping a sub-graph of overlapping nodes,

namely, transfer neighbor nodes, into a virtual node. The original overlapping graph can then be

thought of as a new, next abstract level graph, where the nodes consist of virtual nodes and the rest of

ungrouped, original nodes.

Consider, for example, an original graph with three groups of overlapping nodes as shown in Figure

4(a). We impose three windows over these groups as big virtual nodes. The FTA is applied to removing

the node overlaps within the virtual nodes respectively, the sizes of which are expanded accordingly.

The three virtual nodes shown in Figure 4(b) then form the first abstract level of a new overlapping

graph. In this way, we repeat this procedure until all overlaps have been removed.

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 14

Fig.4. Determination of seed node

The multiple abstract level version of FTA has still suffered the problem of slow running in the case

of a TTN with a large number of overlapping nodes. Suppose that all the nodes have iteratively

overlapped with each other in a large graph. In other words, a large graph includes only one TTN. We

develop a grid version of FTA, in which a grid window is imposed over such a graph with densely

overlapping nodes. After removing overlaps within each grid cell using FTA, all grid cells are

composed of the next abstract level of overlapping graphs. In fact, the multiple abstract level version of

FTA can be regarded as the adaptive grid version of FTA.

Based on the above ideas, the procedure for the grid version of FTA is given below.

A grid FTA

 Input: a graph G= (V, E) with overlapping nodes

Output: an adjusted graph without overlapping nodes

l=0, V0=V

while |Vl| > the threshold do

 For all lVq∈

 if 1|)(| tqTNNt << then

Impose a minimal window to include all adjusted nodes in TNN(q)

Apply FTA to TNN(q)

 end if

 if 1|)(| tqTNN ≥ then

 Impose a grid window over all overlapping nodes

 Apply FTA to removing node-overlaps in each grid cell

 The imposed windows are regarded as virtual nodes in the next abstract level of a graph;

that is, Vl+1

 end if

 l=l+1

end while

Remove all rest overlaps

Note that all already adjusted nodes may still be relocated together with the relocation of its virtual

node during the adjustment of the next abstract level of a graph.

In our experiments, the first threshold of the above algorithm is 30, while other thresholds are set to t

=10~20 and t1= 30~40. As for the size of a grid cell of the window, we provide an experimental

principle: the number of overlapping nodes covered by each grid should not exceed 40.

Imposing three windows on G0 forms
three virtual nodes

Applying FTA to remove the overlaps inside the
nodes within each virtual node. The visual nodes
form the next abstract level of an overlapping
graph G1

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 15

5. Properties of Force-Transfer Algorithm

In order to show the correctness and some properties of our algorithm, we provide three theorems and

their proofs in this section.

Theorem 2 Given a graph layout with overlapping nodes, FTA ensures that the adjusted graph layout

has no overlapping nodes.

Proof. To prove that FTA works correctly, we need to show φ=)(iNN or φ=)(jNN where any two

nodes i and j are on the same side of the seed node s. Suppose that for an adjustment, 00, ji xx , '0
ix and '0

jx

denote the original and new x centre coordinates of nodes i and j respectively, and 00
ij xx ≥ , then we have

'0'0
ij xx − = ∑ ∑+−∑ ∑+

+= =+= =

i

sn

n

sm

x
mni

j

sn

n

sm

x
mnj xx

1

0

1

0)(δδ

= ∑ ∑+−
−

+= =

ij

sn

n

sm

x
mnij xx

1

00 δ

 x
mnij xx δ+−≥ 00

 =
2

|| 0000 ji
jiij

ww
xxxx

+
+−−−

2

ji ww +
=

For 00
ij yy ≥ , it can similarly be shown that '0'0

ij yy −
2

ji hh +
≥ .

That is, the applied force on two random nodes separates them in the x or y direction with a distance of

either '0'0
ij xx −

2
ji ww +

≥ or '0'0
ij yy −

2
ji hh +

≥ . If nodes i and j locate at different sides of the seed node s such

as the left and right sides, we are also able to give a similar proof. In conclusion, we have φ=)(iNS

or φ=)(jNS after an adjustment. □

Theorem 3 FTA is a polynomial-time |)(|Vρ approximation algorithm, where 2)1|(||)(| −= VVρ , and

|V| is the number of nodes.

Proof. We have already shown that FTA runs in polynomial time.

We consider the worst case in which all the right nodes of node i are iteratively overlapping with each

other. In other words, the applied force between nodes i and j (j > i) in FTA is transferred to all the

nodes to the right of node i, namely its transfer right neighbor nodes denoted as TRNN (i).

Without loss of generality, suppose that among number of |TRNN(i) | nodes within TRNN(i), there

are m pairs of overlapping nodes i and j having ijij yx Δ≤Δ , where m is a positive integer. Also suppose

that the seed node is the leftmost node in V, i.e., s = v1.

For the removal of the first node-overlapping j of node i, and if we have ijij yx Δ≤Δ , the optimal

adjustment at least pushes node j by the distance of ijxΔ . In contrast, within FTA each node in TRNN(i)

has to be moved by a distance ijxΔ to the right. The adjusted distances for all nodes due to relocating

node j thus amount to ijxΔ |TRNN(i)|. Based on the above assumption, m pairs of overlapping nodes in

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 16

TRNN(i) lead to the total adjustment distances of m ijxΔ in the optimal adjustment, and m ijxΔ |TRNN(i)|

in FTA. It follows that the rest of the nodes |TRNN(i)|- m should be repositioned in the y direction.

Consequently, we have the lower bound of the optimal cost function

as ∑
−

=
Δ+Δ≥

1||

1
1

* }))((|{)(
V

i
ijij y -m|iTRNNxm vf

where }{
)('

'

iRNNj
jminj

∈
= .

The adjustment cost of FTA is as follows

 ∑
−

=
Δ+Δ=

1||

1
1 }))((|)({)(

V

i
ijij

FTA y -m|iTRNNx|iTRNN|m vf

 ∑
−

=
Δ+Δ≤

1||

1
}))((|)(|{

V

i
ijij y -m|iTRNNx-1|Vm

 ∑
−

=
Δ+Δ−=

1||

1

2 }))((|{)1|(|
V

i
ijij y -m|iTRNNxm V

)()1|(| 1
*2 vfV −=

An intuitive explanation for the above proof is as follows: one of each pair of overlapping nodes has

been moved at a distance of ijxΔ (or ijyΔ). In FTA, all the nodes on the right of this node will be

relocated the same distances. In the worst case, this amounts to ijxV Δ−)1|(| (or ijyV Δ−)1|(|). It is easy

to reach the conclusion for all)1|(| −V nodes. □

Theorem 4 The time complexity of FTA is)(2n O .

Proof. As previously stated, the algorithm contains four scans. Here we look at the right scan again.

The right scan starts by obtaining both the right neighbor nodes and transfer right neighbor nodes of

each node on the right side of the seed node. Obviously, the running time of the former is bounded by

O(n2) since there are two loops in the pseudo-code presented in Section 2.4. The worst-case time

complexity of the latter is also O(n2). The computational complexity of the transfer right neighbor

nodes of each node is greatly reduced by using Theorem 1. The while statement in the right scan and

the updating of the transfer right neighbor nodes of the next adjusted node require O(n2) computational

time at most. As such, the time complexity of FTA is O(n2) in the worst case. □

FTA cannot make sure that the adjusted layout preserves the “orthogonal ordering” mental map

[12] of an original graph layout. The forces are only restrictedly transferred between neighbor nodes,

thereby maintaining the relative positions among them. They, however, cannot ensure that the relative

positions are preserved between neighbored and non-neighbored nodes. For this reason, a slightly

varied FTA is provided to keep the mental map of “orthogonal ordering”. This is accomplished by

considering all nodes in a graph equivalently. More precisely, a transferred force on a node moves an

identical distance for all successive nodes of this node in the scan direction, regardless of whether they

are neighbor nodes or not. As a consequence, by preserving the “orthogonal ordering”, this variant of

FTA produces a less compact graph layout than the original FTA. Nevertheless, the resulting layout is

still more compact than that by FSA due to the reason presented as Lemma 1 in Section 6. Note that we

will not compare this variant of FTA to FSA in Section 7.

6. Comparison with Force-Scan Algorithm

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 17

In this section, we compare FTA to FSA. We start with a brief introduction of FSA, and then give a

proof of the fact that FTA is superior to FSA.

(b) A force in FTA (c) A force in FSA

Fig.5. the forces in FSA and FTA

Similar to FTA, FSA uses a force to separate nodes i and j as shown in Fig. 5. However, they differ in

the choice and transfer of the force. FSA uses the force that is along the line connected the centre of

two overlapping nodes as shown. Moreover, a force in FTA is equal to the minimum of two orthogonal

projections of the corresponding force in FSA. Additionally, this force is transferred only to the nodes

within the transfer neighbor nodes of a particular node from which to be applied. This is in contrast to

the fact that the force on the same node in FSA is unconditionally transferred to all nodes to the right of

this node.

 The horizontal scan of FSA is shown as follows [7, 12].

while i<|V| do

Suppose that kii xxx === + L1

x
mjVjkmi f||max ≤≤≤≤←δ

for 1+← ki to |V| do 1+← jj xx

1+← ki
In the following we show that FTA outperforms FSA.

Lemma 1 Given a graph layout with overlapping nodes, an applied force in FTA is not greater than

the corresponding one in FSA, namely || FSA
ij

FTA
ij

 f| |f ≤ .

Proof. We give the formulae for computing an applied force used to separate two overlapping nodes i

and j in both algorithms. Note that for briefly, in the following we omit the parameters G, G’ and s of

the f function in Definition 5. From (2), (3) and (4), in FTA we have:

⎩
⎨
⎧ ∧≤−−+

=

=

)(||2/)(
0

ji,NΔyΔxifxxww
otherwise

f

ijij
0
j

0
iji

x
ij

x
ijδ

and

⎩
⎨
⎧ ∧>−−+

=

=

)(||2/)(ji,NΔyΔxif yyhh
otherwise 0

f

ijij
0
j

0
iji

y
ij

y
ijδ

(a) Overlapping nodes

i

i

i

j j

j

1←i

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 18

 (5)

In contrast, in FSA we have [7, 13]:

⎪
⎩

⎪
⎨

⎧
≠∧∧Δ>Δ

∧Δ≤Δ−−+
=

otherwise
yyjiNyxif

 jiNyxif xxww

jiijij
x

ij

ijijjiji
x

ij

0
),(

),(||2/)(
00

00

φδ

⎪
⎩

⎪
⎨

⎧
≠∧∧Δ≤Δ

∧Δ>Δ−−+
=

otherwise
xxjiNyxif
jiNyxif yyhh

jiijij
y

ij

ijijjiji
y

ij

0
),(

),(||2/)(
00

00

φδ

 (6)

where

||)
||2

1(0
j

0
i0

j
0
i

jix
ij xx

yy
hh

−
−
+

+=φ

and

||)
||2

1(0
j

0
i0

j
0
i

jiy
ij yy

xx
ww

−
−
+

+=φ

Comparing (5) to (6), it is clear that for removing two overlapping nodes i and j, an applied force
x

ijδ (or y
ijδ) in FTA is not greater than 22)()(y

ij
x

ij φδ + (or 22)()(x
ij

y
ij φδ +) in FSA. This means that the

force in FTA is the minimum projection of the corresponding force in FSA. Only in the case of two

overlapping nodes with the same x or y centre coordinates that the two forces in FTA and FSA are

equal. □

Lemma 2 Given that an applied force is transferable, the sum of the transferred forces on the nodes in

FTA is not greater than those in FSA.

Proof. Suppose that all nodes in a graph are sorted in increasing order by the x coordinates of their

upper left corners, and that the seed node is the leftmost node in V, i.e., s = v1. In general, the sum of

adjusted distances in FTA and FSA is given by

∑ Δ+∑ ∑ Δ=
+=

−

= +=

||

1

1||

1

||

1
1)()(

V

ij
ij

V

i

V

ij
ij yxvf (7)

where ijxΔ and ijyΔ are the orthogonally moved distances of node j caused by separating it from its

left overlapping node i. Similar to the proof in Theorem 3 , we have

)(1vf FTA = ∑
−

=
Δ+Δ

1||

1
}))((||)(|{

V

i
ijij y m-|iTRNNxiTRNNm (8)

where }{
)('

j'minj
iRNNj ∈

= . That is, node j is the first node on the right that overlaps with node i.

 In contrast, all nodes to the right of node i within FSA, which have |V|-i nodes in total, move at both

ijxΔ (or ijyΔ) and y
ijφ (or x

ijφ) in the x and y directions. The entire adjustment for relocating node j

accumulates to (|V|-i) ijxΔ and (|V|-i) ijyΔ . According to (6) and (7), we have:

∑
−

=
−+Δ−=

1||

1
)()({)(

V

i

y
ijij

FSA i|V| mx i|V| m v f
1

φ

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 19

})())((

)())((
x
ij

ij

 i|V| -m|iTRNN|

x i|V| -m|iTRNN|

φ−+

Δ−+ (9)

where }{
)('

j'minj
iRNNj ∈

= .

It is obvious that i|V||)i(TRNN| −≤ holds. Comparing (8) to (9), we have)()(
11

vfvf FSAFTA ≤ . □

Intuitively, staring from the same node with the different applied forces, FTA transfers the smaller

force only to a group of overlapping nodes, while FSA transfers the bigger one to all the nodes on the

right of this node.

Theorem 5 Given a graph layout with overlapping nodes, the adjusted graph layout by FTA is more

compact than one by FSA.

Proof. We use the cost function of Definition 5 to show the above result. The smaller the value of the

cost function, the more compact the layout. In other words, we need to show)()(sfsf FSA

cost

FTA

cost
≤ . The cost

function is determined by both the force applied on a node and the number of nodes affected by this

transferred force. From Lemmas 1 and 2, it is easy to see the result.

In fact, we have)()(1vfsf FSA

cost

FTA

cost
< in most cases. Only in special cases such as two overlapping nodes

with the same x or y centre coordinates does the equation)()(sfsf FSA

cost

FTA

cost
= hold.

7. Experimental Evaluation

In this section, we report the experimental results using FTA and FSA.

Both FTA and FSA have been implemented in the prototype called PGD using the Java

programming language. In the following we compare FTA to FSA by applying them to a set of

arbitrary overlapping graphs, some of which are similar to those in [5]. First of all, a typical example

using FTA and FSA is shown in Figure 6.

(a) An overlapping graph

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 20

 (b) Layout adjusted by FTA (c) Layout adjusted by FSA

Fig.6. An example of an overlapping graph adjusted by FTA and FSA

Figure 7 illustrates different resulting layouts for the same graph by FTA with various the seed

nodes. In particular, Figure 7 (b) uses the leftmost node while Figure 7 (c) selects the centre node as the

seed nodes. In order to find the best candidate for a seed node, we should select the one that minimizes

the values of the cost function.

Within our prototype system, either users are alternatively allowed to select the seed node for an

adjustment, or the system automatically detects it using the heuristic presented in Section 3.3.

(a) Graph 1 (b) Layout by FTA with s = v1 (c) Layout by FTA with

 s = centre node

Fig.7. Initial and adjustment layouts for Graph 1

When selecting the central position as the dummy seed node for the graph in Figure 8 (a), for

example, Figure 8 (b) shows the layout result by FTA. This layout is better than that shown in Figure 8

(c) also by FTA but with the leftmost node as the seed node. This is because only the two nodes in

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 21

Figure 8 (b) had been moved to the left or right. In contrast, three nodes in Figure 8 (c) had been

repositioned to the right. More importantly, Figure 8 (b) preserves the symmetry of the original layout.

 (a) Graph 2 (b) (c)

 (b) Layout by FTA with a virtual node in the centre

 (c) Layout by FTA with s = v1

Fig.8. Initial and adjustment layouts for Graph 2

Figure 9 (b) shows that an applied force stops transferring from one node to another by using FTA.

The reason for this is that they are not transfer neighbor nodes. Two overlapping nodes are located at

the bottom level of Graph 3, as shown in Figure 9(a). When removing the overlap, the applied force on

the second node cannot pass on to other following nodes on the right direction. It is for this reason that

makes the layout more compact by FTA than by FSA in this instance.

 (a) Graph 3 (b) Layout with FTA (c) Layout with FSA

Fig.9. Initial and adjustment layouts for Graph 3

Figures 10, 11 and 12 show three adjustment examples by applying both algorithms to Graphs 4, 5

and 6, respectively.

These layouts adjusted by FTA are obviously more compact than those by FSA. Furthermore, their

occupying areas by FTA are smaller than those by FSA.

 (a) Graph 4 (b) Layout with FTA (c) Layout with FSA

Fig.10. Initial and adjustment layouts for Graph 4

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 22

(a) Graph 5

 (b) Layout with FTA (c) Layout with FSA

Fig.11. Initial and adjustment layouts for Graph 5

 (a) Graph 6 (b) Layout with FTA (c) Layout with FSA

Fig.12. Initial and adjustment layouts for Graph 6

The biggest node in Graph 7 shown in Figure 13(a) overlaps with two other nodes so that FTA moves

only this node as shown in Figure13 (b). FSA, however, repositions all the nodes to the right of the first

node that is overlapping with the biggest one.

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 23

 (a) Graph 7 (b) Layout with FTA (c) Layout with FSA

Fig.13. Initial and adjustment layouts for Graph 7

Graph 8 in Figure 14 exemplifies that a layout adjustment may introduce edge-node intersections using

FSA, whereas FTA does not produce edge-node intersections for this graph. In some cases, FTA,

however, may also generate edge-node intersections. Fortunately, this problem is readily solved by the

approach in [1].

Graph 9 in Figure15 is an X-shaped graph with the symmetry about both the x- and y-axis. Both the

layouts by FTA and FSA are good, but the gaps between the nodes in Figure 15(c) are a little bigger

than those in Figure 15(b).

 (a) Graph 8 (b) Layout with FTA (c) Layout with FSA

Fig.14. Initial and adjustment layouts for Graph 8

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 24

(a) Graph 9

 (b) Layout with FTA (c) Layout with FSA

Fig.15. Initial and adjustment layouts for Graph 9

In summary, we conclude by the above examples that the layouts adjusted by FTA are more compact

than those by FSA. Furthermore, we also precisely measure the qualities of adjusted layouts using the

cost function and others measures previously defined. The primary measures such as the adjustment

costs and degree of adjusted nodes are reported in Table 1 for the previous example layouts. We also

illustrate them in Figure 16. Note that the leftmost nodes (v1) of those graphs were chosen as the seed

nodes for the calculations of the cost functions.

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 25

Table 1. Value of Cost Function f(v1)

0

200

400

600

800

1000

1200

1400

1600

1800

3 4 5 6 7 8 9

Graph

C
os

t FSA

FTA

(a) Adjustment cost for the graphs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3 4 5 6 7 8 9

Graph

D
A

N FSA
FTA

(b) Degree of adjusted nodes (DAN)

Fig.16. Comparison of values of Cost Function and the degree of adjusted nodes for Graph 3 -Graph 9

Graph(# nodes) 3(10) 4(13) 5(8) 6(12) 7(10) 8(5) 9(18)

F

T

A

Cost function 7 127 86 76 4 18 258

degree of nodes
adjusted

0.10 0.69 0.75 0.42 0.10 0.20 0.06

F

S

A

Cost function 74 1318 457 399 89 85 1335

degree of nodes
adjusted 0.30 0.92 0.88 0.92 0.42 0.60 0.11

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 26

More comparison experiment results are reported in Figs. 17 and 18, with respect to the adjustment cost

and running time.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 2 4 6 8 10 12 14 16 18 20

Graph

C
os

t FTA
FSA

Fig.17. Comparison of values of Cost Function for more graphs

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16 18 20

FTA
FSA

Fig.18. Comparison of the running times for the graphs in Fig. 16

The more complex example layouts are shown in Figs 19 and 20. As the authors of [5] pointed out, the

algorithms are ranked in increasing order of running time as uniform scaling, force-scan, and

constrained optimization. Uniform scaling and force-scan run considerably faster than the constrained

optimization. The time complexity of FTA is the same as that of FSA. Interestingly, the lagrangian

method [5] uses the same minimum force as that in FTA to separate two overlapping nodes. As

opposed to an iterative adjustment, FTA, however, uses four scans to eliminate all overlaps, in order to

reduce the running time. FTA not only runs faster, but also makes the adjusted layout compact.

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 27

(a) A graph with many overlapping nodes

(b) Layout by FTA

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 28

(c) Layout by FSA

Fig.19. A comparison example of FTA and FSA

(a) A graph with many overlapping nodes

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 29

(b) Layout by FTA

Fig.20. An example of overlapping layout adjusted by FTA

8. Applications

Current graph visualization systems usually employ static layout algorithms. Although the static layout

is useful in many applications [24], the dynamic layout is essential in the following situations. Our

algorithm is capable of being applied to all these situations effectively.

Incremental navigation of large graphs: There is considerable interest in visualizing large graphs, such

as computer networks and the WWW. Consider, for example, the incremental navigation of a Web

graph, users’ mental map of the layout should be preserved after changing the graph views from one to

another. Otherwise the users have to spend extra cognitive efforts being familiar with those big

changes. This requires that the alteration of an existing layout should be made as little as possible.

Viewing dynamic data: Graphs are applied to visualize dynamic systems in many settings. Dynamic

graph visualization could be an appropriate way of showing the history of the data. Relative stability is

necessary for such visualizations to reveal what is actually changing in the structure of the underlying

data.

Interactive graph editing: Graph visualization systems usually support interactive editing. Our dynamic

adjustment algorithm could improve the interface usability of such systems.

9. Conclusion

Graphs where the nodes include their labels are often used in applications. A typical example of such

graphs is UML diagrams in CASE tools. In order to make the label of each node readable, it requires

that drawings of these graphs should have no node-overlapping. This is also crucial in a dynamic

environment of graph visualization. In this paper, we have presented the Force-Transfer algorithm that

removes node-overlaps. The proposed approach employs a heuristic method to approximate a global

optimal adjustment with the local minimal movement. Scanning from particular nodes called the seed

nodes in a graph, this approach orthogonally transfers the minimum forces to only those nodes that

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 30

recursively overlap with the nodes from where the forces start. We compare the Force-Transfer to the

Force-Scan algorithm, demonstrating that our approach is able to generate better results. It is concluded

that FTA achieves an adjusted layout with a good trade-off between a compact layout and running time.

Our approach can be applied not only to adjust graph layouts, but also to position non-overlapping

objects such as windows and labels, by specifying a minimum gap between the objects.

References

[1] W. Lai and P. Eades, Removing edge-node intersections in drawings of graphs, Information

Processing Letters, 81(2002) 105-110.
[2] W. He and K. Marriott, Constrained graph layout, Constraints, 3 (4) (1998) 289-314.

[3] G. D. Battista, P. Eades, R. Amassia and I. Tollis, Graph drawing: Algorithms for the Visualization

of Graphs, Prentice Hall, 1998.

[4] P. Eades and W. Lai, Algorithms for disjoint node images, in: Proc. 15th Australian Computer

Science Conference, Hobart, 1992, pp.253-265.

[5] K. Marriott, P. Stuckey, V. Tam and W. He, Removing node overlapping in graph layout using

constrained optimization, Constraints, (2003)1-31.

[6] W. He and K. Marriott, Removing node overlapping using constrained optimization, in Proc. 21st

Australian Computer Science Conference, Perth, 1998, pp.169-180.

[7] W. Lai, Building interactive diagram applications. PhD thesis, University of Newcastle, 1993.

[8] R. Davidson and D. Harel, Drawing graphs nicely using simulated annealing, ACM Transactions on

Graphics, 15(4) (1996) 301-331.

[9] B. P. Buckles and F. E. Petry, Genetic algorithms, Computer Society Press, Los Alamitos, CA.,

1992.

[10] F. Glover, Tabu search, Part I, ORSA Journal on Computing, 1(3) (1989) 190-206.

[11] F. Glover, Tabu search, Part II, ORSA Journal on Computing, 2(1) (1989) 4-32.

[12] P. Eades, W. Lai, K. Misue and K. Sugiyama, Layout adjustment and the mental map, Journal of

Visual Languages Computer, 6 (1995)183-210.

[13] H. Kunihiko, I. Michilo, M. Toshimitsu and F. Hideo, A layout adjustment problem for disjoint

rectangles preserving orthogonal order, Systems and Computers in Japan, 33(2) (2002) 31-42.

[14] K. A. Lyons, H. Meijer, and D. Rappaport, Algorithms for cluster busting in anchored graph

drawing, Journal of Graph Algorithms and Applications, 2(1) (1998) 1–24.

[15] M. D. Story and A. H. Müller, Graph layout adjustment strategies, in: Symposium on Graph

Drawing, GD’95, LNCS 1027, Springer-Verlag, 1995, pp. 487-499.

[16] M-F. Natasa and S. Ralph, SmartView: Flexible viewing of Web page contents, in: Proc. 11th

International World Wide Web Conference, Hawaii, USA, 2002.

[17] D. Harel and Y. Koren, Drawing graphs with non-uniform Vertices, in: Proc. Working Conference

on Advanced Visual Interfaces (AVI'02), ACM Press, 2002, pp.157-166.

[18] M.G. Kendall, Rank correlation methods, Griffin, London, UK, 1970.

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

 31

[19] C. Dwork, R. Kumar, M. Naor and D. Sivakumar, Rank aggregation methods for the Web, in:

Proc. 10th International World Wide Web Conference, Hong Kong, 2001.

[20] X.D. Huang Filtering, clustering and dynamic layout for graph visualization, Ph.D. thesis,

Swinburne University of Technology, 2004.

[21] P. Eades, W. Lai, K. Misue, and K.Sugiyama, Preserving the mental map of a diagram. Technical

report IIAS-RR-91-16E, International Institute for Advanced Study of Social Information Science,

Fujitsu Laboratories Ltd, 1991.

[22] X. Huang, W. Lai, Clustering graphs for visualization via node similarities, Journal of Visual

Languages and Computing, 17 (2006) 225-253.

[23] U. Dogrusoz ， Two-dimensional packing algorithms for layout of disconnected graphs ，

Information Sciences 143 (2002) 147-158.

[24] B. Genc, U. Dogrusoz, layout algorithm for signaling pathways, Information Sciences, 176 (2006)

135-149.

Charles Sturt University, Australia
http://researchoutput.csu.edu.au

