Abstract: This paper provides an integrated overview of the results collated from component papers and discusses the inferences which can be drawn from what was a complex, agro ecosystem trial. The measurements recorded both early and late in the trial were tabulated for each of the farmlets and compared to each other as relative proportions, allowing visual presentation on a common, indexed scale. Because of equivalent starting conditions, there was little difference between farmlets early in the trial period (2000-2001) across a wide array of measured parameters including herbage mass, potential pasture growth rate, live weight, wool production per head, stocking rate, gross margin and equity. Although the trial experienced drier-than-average conditions, marked differences emerged between farmlets over time, due to the effects of treatments. During the latter half of the trial period (2003-2006), farmlet A showed numerous positive and a few negative consequences of the higher rate of pasture renovation and increased soil fertility compared to the other two farmlets. Whilst intensive rotational grazing resulted in superior control of gastrointestinal nematodes and slightly finer wool, this system had few effects on pastures and no positive effects on sheep live weights, wool production or stocking rate. Whereas farmlet A showed higher gross margins, it had a negative and much lower short-term cash position compared to farmlets B and C, due largely to the artificially high rate of pasture renovation undertaken on this farmlet during the trial. Although farmlet B had the highest cash position at the end of the trial, this came at a cost of the declining quality of its pastures. Modelling of the farmlet systems allowed the results of this drier-than-average experimental period to be seen in the context of long-term climatic expectations. The main factors responsible for lifting the productivity of farmlet A were the sowing of temperate species and increased soil fertility which enhanced the amount of legume and increased pasture quality and potential pasture growth. The factor which affected farmlet C most was the low proportion of the farmlet grazed at any one time, with high stock density imposed during grazing, which decreased feed intake quality. The paper concludes that more profitable and sustainable outcomes are most likely to arise from grazing enterprises which are proactively managed towards optimal outcomes by maintaining sufficient desirable perennial grasses with adequate legume content, enhancing soil fertility and employing flexible rotational grazing.
Integrated overview of results from a farmlet experiment which compared the effects of pasture inputs and grazing management on profitability and sustainability

JM ScottAN, K BehrendtB, A ColvinC, F ScottD, LM ShakhaneE, C GuppyA, J HoadA, CA GadenF, C EdwardsG, GN HinchA, OJ CachoH, GE DonaldI, D CottleA, T CoventryK, G WilliamsL, DF MackayM

A School of Environmental and Rural Science, University of New England, Armidale, 2351, Australia
B EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), School of Agricultural and Wine Science, Charles Sturt University, Orange, NSW 2800, Australia
C “Pine Grove” 6248 New England Highway, Ben Lomond NSW 2365, Australia
D NSW Trade & Investment, 4 Marsden Park Road, Calala NSW 2340, Australia
E National University of Lesotho, Lesotho
F “Beaumont”, Invergowrie, NSW, 2350, Australia
G NSW Department of Primary Industries, Armidale, NSW 2350, Australia
H UNE Business School, University of New England, Armidale, 2351, Australia
I CSIRO Livestock Industries, Armidale, 2350, Australia
J Chairman, Cicerone Project, “Bailey Park”, Armidale, NSW, 2350, Australia
K “Eastlake”, Uralla, NSW, 2358, Australia
L 3 Jayne Cl, Armidale, NSW 2350, Australia
M Corresponding author: Jim.Scott@une.edu.au

Abstract

The Cicerone Project conducted a grazed farmlet experiment on the Northern Tablelands of NSW, Australia, from July 2000 to December 2006 to address questions raised by local graziers concerning how they might improve the profitability and sustainability of their grazing enterprises. This unreplicated experiment examined three management systems at a whole farmlet scale: the control (farmlet B) represented typical management for the region with flexible rotational grazing and moderate inputs. A second (farmlet A) also used flexible rotational grazing but had a higher level of pasture renovation and soil fertility, whilst the third (farmlet C) had the same moderate inputs as farmlet B but employed intensive rotational grazing.
This paper provides an integrated overview of the results collated from component papers and discusses the inferences which can be drawn from what was a complex, agroecosystem trial. The measurements recorded both early and late in the trial were tabulated for each of the farmlets and compared to each other as relative proportions, allowing visual presentation on a common, indexed scale.

Because of equivalent starting conditions, there was little difference between farmlets early in the trial period (2000-2001) across a wide array of measured parameters including herbage mass, potential pasture growth rate, liveweight, wool production per head, stocking rate, gross margin and equity. Although the trial experienced drier-than-average conditions, marked differences emerged between farmlets over time, due to the effects of treatments. During the latter half of the trial period (2003-2006), farmlet A showed numerous positive and a few negative consequences of the higher rate of pasture renovation and increased soil fertility compared to the other two farmlets. Whilst intensive rotational grazing resulted in superior control of gastrointestinal nematodes and slightly finer wool, this system had few effects on pastures and no positive effects on sheep liveweights, wool production or stocking rate.

Whereas farmlet A showed higher gross margins, it had a negative and much lower short-term cash position compared to farmlets B and C, due largely to the artificially high rate of pasture renovation undertaken on this farmlet during the trial. Although farmlet B had the highest cash position at the end of the trial, this came at a cost of the declining quality of its pastures. Modelling of the farmlet systems allowed the results of this drier-than-average experimental period to be seen in the context of long-term climatic expectations.

The main factors responsible for lifting the productivity of farmlet A were the sowing of temperate species and increased soil fertility which enhanced the amount of legume and increased pasture quality and potential pasture growth. The factor which affected farmlet C most was the low proportion of the farmlet grazed at any one time, with high stock density imposed during grazing, which decreased feed intake quality.
The paper concludes that more profitable and sustainable outcomes are most likely to arise from grazing enterprises which are proactively managed towards optimal outcomes by maintaining sufficient desirable perennial grasses with adequate legume content, enhancing soil fertility and employing flexible rotational grazing.

Key Words
Farming systems, multi-disciplinary, pasture quality, pasture legumes, parasitology, modelling, risk, optimisation.

Introduction
This paper aims to integrate the findings from a series of related papers which were part of a multi-disciplinary study of different grazed farmlets conducted on the Northern Tablelands of NSW, Australia from July 2000 to December 2006. The experiment was set up to answer questions chosen by local livestock producers about ways of enhancing the feed supply, either through pasture renovation and soil fertility or through intensive grazing management.

Managing a grazing enterprise is challenging under any circumstances and especially so when climatic conditions are highly variable, as they are in this region (Behrendt et al. 2012c; Sutherland et al. 2012). According to Williams (1994), graziers have to learn to ‘simultaneously balance many balls in the air’ in order to satisfactorily manage complex grazing systems. Lodge et al. (1998) described some of the paddock management factors that are readily observed by farmers as: the proportions of desirable perennial grasses and legumes, the amounts of green leaf and surface litter, and the level of ground cover. To this list could be added observable attributes of livestock such as condition, liveweight, pregnancy and general animal health. However, when one considers additional influences on a farm system such as soil fertility, pasture composition, grazing management and the stochastic (random) behaviour of prices and climate, it is clear that making optimal decisions presents an intractable challenge for most managers.

In this paper we have summarised the relative contributions of soil, pasture, animal, economic and environmental parameters over time in a similar fashion to the measurements of sustainability reported by both Scott et al. (2000) and Lodge et al. (2003). This approach to quantifying
sustainability has been found to be useful not only for scientists but also for graziers whose visual assessments of pastures have been found to be highly correlated with research assessments (Lodge 2002).

The main conclusion from the recent national Sustainable Grazing Systems experiment, conducted across southern Australia, was that the productivity and sustainability of pasture-based systems can be enhanced by higher levels of soil fertility, the amelioration of low soil pH, the sowing of deep-rooted perennial grasses and the use of grazing methods that permit substantial rest periods between grazings (Andrew et al. 2003). On the Northern Tablelands of NSW, there has been a considerable body of research into the growth of both sown and native pastures and their responses to nutrients (Cook et al. 1976; 1978; Lazenby and Lovett 1975; Robinson and Lazenby 1976; Whalley et al. 1976; Wolfe and Lazenby 1973). In spite of this published evidence that substantial responses can be gained from the sowing of pastures and the amelioration of nutrient deficiencies, many graziers in this region today question the long-term economic benefits of these technologies, given the perceived high costs of improving pastures (Vere and Campbell 2004), whilst many have expressed interest in intensive grazing management as a potential alternative management solution (Scott et al. 2012c).

Comprehensive multi-disciplinary studies of grazing management are rare in Australia. One of the earliest and most complete studies was a replicated trial conducted by Moore et al. (1946) which compared continuous and rotational grazing over either 4- or 8-week intervals. They found that, apart from retaining a somewhat higher level of lucerne in the pasture, rotational grazing was not a reliable way to increase livestock production. However, as noted by Hacker (1993), there has also been relatively little research into intensive rotational grazing (IRG) systems in Australia. Also, most of the studies undertaken have compared such systems with continuous grazing (Dowling et al. 2005; Earl and Jones 1996; Sanjari et al. 2008; Waller et al. 2001). Livestock producer members of the Cicerone Project felt that, at least for the Northern Tablelands region of NSW, which is part of Australia’s temperate high rainfall zone, the use of continuous grazing as
the control treatment is inappropriate, as few graziers practise ‘continuous stocking’ as implemented in these earlier experiments.

Whilst there are recorded cases of farm managers and proponents of intensive grazing management claiming benefits of such systems including increased soil phosphorus, stocking rates and profits (Cawood 2004; McCosker 2000), there are also publications where some of the claims have been refuted (Dowling et al. 2005; Hall et al. 2011; Waugh 1997). The earliest of these papers, written by a grazier from central NSW, reported unsatisfactory cattle growth when he implemented ‘time control grazing’ on his property. After this experience, he resorted to a less intensive form of rotational grazing with a rest period of about 30 days (Waugh 1997). In a recent report of grazing systems on rangelands across inland Queensland, Hall et al. (2011) found that stocking rate was a much more important driver of performance than grazing system. However, shortly after the release of these findings, the methodology used in the project was reportedly criticised by proponents of time control grazing and holistic resource management (Cawood 2011).

The debate about rotational grazing remains unresolved, partly because research has not adequately addressed the human variables which affect management systems (Briske et al. 2011). However, those planning the Cicerone farmlet experiment did consider the decision-making approaches of livestock producers in designing the farmlet treatments (Scott et al. 2012c). During the planning phase, Cicerone producer members and collaborators agreed that the research conducted into intensive rotational grazing systems in the high rainfall zone of Australia had not been conducted in a sufficiently comprehensive fashion to satisfactorily answer the questions that members had. Whilst Norton (1998), in his extensive review of the literature, hypothesised that intensive grazing management might result in increased production of pasture which could lead to increased stocking rates, the Cicerone Project decided that such suggestions needed to be tested under realistic experimental conditions. Thus, livestock producers requested that both pasture renovation with higher soil fertility and intensive rotational grazing be compared with a more typical management system within a whole farmlet experiment. This would permit the multiple facets of such systems to be measured at a credible scale (Scott et al. 2012c).
The Cicerone farmlet experiment can be seen as an agroecological experiment with interactions between the many component parts of grazed farming systems interacting in complex ways with the climate and management. Eberhardt and Thomas (1991) pointed out that the design of adequate ecosystem experiments often means that conventional experimental design criteria need to be challenged; they also highlighted the need for more care to be taken in drawing inference about cause and effect from such experiments due to the many complex interactions within agricultural ecosystems. Details of the selection of experimental treatments and hypotheses employed in this experiment have been described in detail by Scott et al. (2012c). In brief, the hypothesis of the Cicerone farmlet experiment was that, compared to the typical farmlet (B), higher pasture inputs combined with higher soil fertility (farmlet A) and/or intensive grazing management (farmlet C) will result in a more profitable and sustainable enterprise.

Methods

The general methods adapted for use in the Cicerone farmlet trial have been described by Scott et al. (2012c) whereas other more specific methods are contained in related component papers in this Special Issue. The approach taken here has been to summarise the results and calculate indices for all measured parameters so that readers can assess for themselves the validity of the interpretations of evidence drawn by the authors of this paper. This method of comparing treatments across a range of criteria is based on an approach developed for an earlier grazed trial which aimed to quantify sustainability (Scott et al. 2000). Thus, a wide array of data summarising the many objective measurements from each of the farmlets were extracted from the Cicerone database (Scott et al. 2012c) from both early and late in the trial period to allow direct comparisons to be made between each of the farmlets according to multiple criteria. Where appropriate, the values presented over the later period have been averaged over two or more years, in order to reduce the effects of year-to-year variation in some of the data and thereby provide more robust measurements of the observed differences.

In each of the tables presented, to facilitate comparisons between farmlets, the proportion of the maximum or minimum value, depending on whether a high or low result is considered desirable,
have been added to normalise all of the data to a scale of 0-1. The proportions were calculated as described by Scott et al. (2000). In brief, if the desired value of a particular factor is high (e.g. wool cut), then its average value for a particular farmlet was divided by the maximum of the values over the three farmlets for that parameter, to give a proportion of the maximum value attained for each farmlet. Alternatively, if the desired value of a parameter is low (e.g. number of drenches), then the minimum value over the three farmlets was divided by the value for each farmlet, to give a proportion of that minimum value for each farmlet. For example, in a case with a high desired value, such as soil nitrogen (N), row 1 of Table 1 shows values in 2001 for farmlets A, B and C of 17.4, 5.2 and 13.4 respectively. Dividing each of these numbers by the maximum of the three (17.4) gave proportions of 1.00, 0.30 and 0.77 respectively. In cases where one or more observation was negative (e.g. cash position), the data for all three farmlets were first adjusted to be equal to or above zero by adding the absolute value of the most negative observation, before calculating the proportion. The overall average index values for each farmlet are simple averages of all calculated indices without any attempt to weight different parameters as, in our view, any weightings would be too subjective.

As all of the comparisons made in this paper are between average measurements from each of the three unreplicated farmlets, no statistical analyses have been reported here. The case for drawing causal inference between these three farming system treatments has been discussed in detail by Murison and Scott (2012). Wherever feasible, the component papers of this Special Issue have reported on the various statistical analyses conducted and the significance of the differences found between treatments for the particular measured parameters.

Results

The average values of raw data derived over a wide array of parameters for each farmlet and the proportions, or indices, from early (2000-2001) and late in the trial (2003-2006) are presented in Table 1 and Table 2 respectively. The overall average index across all measured parameters early in the trial was 0.91, 0.86 and 0.86 for farmlets A, B and C respectively (Table 1) which suggests that all three farmlets were quite similar at that time. By late in the trial, the differences between
farmlet A and the other two farmlets had increased such that the average index across all parameters was 0.91, 0.76 and 0.76 for A, B and C respectively (Table 2).

The relative proportions for each measured parameter are also shown graphically in Figure 1 and Figure 2 from both early and late in the trial. In general, the relative indices shown in Figure 1 (from 2000-2001) display considerable similarity among the three farmlets except for several parameters which changed quickly following the imposition of differential treatments on the farmlets from July 2000 (e.g. soil fertility measurements and the lower cash position of farmlets A and C due to investments in pastures, fertiliser and fencing and water infrastructure).

Figure 2 shows that the differences which developed over time between the three farmlets were more marked, especially between farmlet A and the other two farmlets.

As it is not feasible in a single paper to satisfactorily discuss all of the component issues in depth, the reader is referred to those related papers noted in Tables 1 and 2 for more detailed background and discussion of particular factors measured in the farmlet experiment. The most significant relationships between the relative measures of the various parameters on each farmlet are discussed below.

Discussion and conclusions

An interpretative discussion of some of the results is given below, followed by a broader, more integrative discussion of the relevance of the experiment and its findings and finally, a statement of the conclusions reached.

Interpretation of the results

Soil nutrient levels. Soil nutrient levels diverged quickly (Table 1) and became more different over time in response to treatment (Table 2). Soil phosphorus and at times soil sulfur, were significantly correlated with positive changes in botanical composition (Guppy *et al.* 2012; Shakhane *et al.*
217 2012b), including sown perennial grasses and legumes, pasture quality (Shakhane et al. 2012a),
218 liveweight and stocking rate (Hinch et al. 2012a). These results are consistent with other Northern
219 Tableland results which have shown the importance of improving livestock production through
220 higher rates of nutrient cycling and retention of those nutrients by livestock in the grazing
221 ecosystem without leakage below the pasture root zone (Chen et al. 2002). However, it is
222 noteworthy that there may not have been sufficient time for the nutrient flows within the farmlet
223 trial to have stabilised, as called for by van Keulen et al. (2000).
224 Botanical composition. The maintenance of sown perennial grasses, the moderate increase in
225 legume content and decrease in warm season grasses were closely associated with the pasture
226 renovation and increased soil fertility on farmlet A (Shakhane et al. 2012b). The proportion of
227 sown perennial grasses was maintained somewhat better by intensive rotational grazing (farmlet C)
228 than under typical management (farmlet B) which had a substantial decline in this group as well as
229 a large increase in warm season grasses.
230 Kemp (2000) described how grazing management tactics need to be used that encourage the
231 more desirable species to persist. He stated that controlling the ‘ability of animals to select what
232 they eat’ is an essential part of grazing management as continuous grazing, especially of large
233 areas, leads to patches developing in pastures. As found by Shakhane et al. (2012b), the
234 combination of extended grazing periods and moderate inputs resulted in a greater level of patch
235 grazing on farmlet B.
236 The importance of legumes in grazed pastures in Australia is well known. Even though there
237 was, in general, a low legume content (mostly white clover) on all the farmlets, this was associated
238 with the drier-than-average seasons experienced (Behrendt et al. 2012c). Nevertheless, farmlet A
239 had significantly higher legume content than either of the other farmlets due to the dual effects of
240 higher soil fertility and its longer graze and shorter rest periods than farmlet C (Shakhane et al.
241 2012a). Singh et al. (1999) have noted that higher soil phosphorus levels tend to be associated
242 with higher legume content in pastures, even during dry periods. The persistence of the perennial
243 legume, white clover, on the Northern Tablelands of NSW, was studied in a long-term trial over
more than 30 years by Hutchinson et al. (1995). When the vegetative presence of the legume was reduced to low levels, they found that it was difficult to get substantial recruitment from seed pools, resulting in low levels of legume especially following periods of drought (Hutchinson et al. 1995). As reported by McCaskill and Blair (1988), in dry seasons, legume growth tends to be consumed rather than accumulated, resulting in increased animal liveweights. Even though the levels of legume measured on the Cicerone farmlet experiment were generally low, they still had significant effects on livestock production (Hinch et al. 2012a) and wool growth (Cottle et al. 2012).

Herbage mass and quality. In general, farmlets B and C had much higher levels of dead and total herbage than farmlet A whereas all three farmlets tended to have similar levels of green herbage. Although farmlet C reported similar levels of green herbage, its availability to the grazing animal was less due to the intensive nature of its grazing management which meant that a much smaller proportion of the farmlet was accessible to the livestock at any one time. With its greater level of temperate species (Shakhane et al. 2012b) and higher soil fertility, farmlet A had significantly higher digestibility levels resulting in a higher level of green digestible herbage over much of the experiment (Shakhane et al. 2012a). Digestible herbage is known to be increased substantially by higher levels of soil P and S resulting in increased animal production (Saul et al. 1999).

Potential pasture growth. Measured pasture growth was similar between farmlets (Shakhane et al. 2012a), due to the generally dry conditions. However, the level of greenness, detected by measuring the normalised difference vegetation index (NDVI) via Landsat satellite images, which is a surrogate measure of potential pasture growth, was significantly higher for farmlet A compared to the two other farmlets (Donald et al. 2012). Pasture growth rate is known to be the principal factor supporting changes in stocking rate which diverged over time between the farmlets (Hinch et al. 2012a).

Liveweight. The substantial differences between animal performance of ewes, hoggets, wethers and cattle were linked to the level of green digestible herbage and the degree of dietary choice offered under the different grazing management regimes (Hinch et al. 2012a). Under the intensive
rotational grazing regime, high stocking densities meant that animals competed intensely for the green digestible herbage available as shown by the rapid disappearance rate of the green component of pastures on that farmlet (Shakhane et al. 2012c). The differences between animal liveweights on farmlets were greatest when the period of grazing rest on farmlet C was longest. Liveweights were also affected by the amount of legume herbage, stocking rate and the amount of supplement fed (Hinch et al. 2012a).

Fat scores and reproduction. As with animal liveweights, the fat scores of breeding ewes tended to be higher on the two farmlets that offered longer graze periods (A and B) (Hinch et al. 2012b). The greater levels of green digestible herbage and the flexible grazing regime also led to higher levels of pregnancy in scanned ewes of farmlets A and B (Hinch et al. 2012b).

Wool production and quality. The differences between farmlets in wool production per head and wool quality whilst often significant, were not large. However, due to the combination of higher production per head and stocking rate, the amount and value of wool production per hectare was substantially greater on farmlet A compared to the other farmlets (Cottle et al. 2012).

Parasites. Overall, gastrointestinal nematodosis (GIN), as indicated by faecal worm egg count, was significantly reduced on farmlet C compared with the other two farmlets (Colvin et al. 2008; Walkden-Brown et al. 2012). The greatest impact was seen on Haemonchus contortus, with a lesser impact on the other major nematode species (Trichostrongylus spp. and Teladorsagia circumcincta). As a consequence, sheep on farmlet C received fewer anthelmintic treatments. Lighter liveweights and fleece weights per head were observed on sheep from farmlet C, especially early in the trial when the grazing rest periods were longest. Comparisons of GIN-free sheep (treated with long-acting anthelmintics) and sheep with natural infections showed that there was no impact of GIN on production traits on farmlet C whereas, bodyweight, fat score, fleece weight and pregnancy rate were all higher in worm-free sheep on farmlets A and B. There was strong evidence that the control of GIN on farmlet C was mediated through the intensive grazing management which interrupted the free-living stages of the nematode life-cycle (Colvin et al. 2012). Short grazing periods (2-4 days) prevented autoinfection and sufficient rest periods
prevented large scale re-infection by allowing a significant decline of infective larval populations on pasture.

Economic outcomes. The modelling which complemented the experimental results of the Cicerone experiment has been discussed in other papers in this issue (Behrendt *et al.* 2012a; Behrendt *et al.* 2012b; Behrendt *et al.* 2012c; Scott *et al.* 2012a; Scott *et al.* 2012b). Modelling was especially important in the economic analyses, given the run of poor years experienced over most of the experimental period. The economic analyses used different strategies to answer a sequence of related questions.

Scott *et al.* (2012b) used a representative-farm approach to provide realistic ‘full-scale’ financial results by adjusting the results from the farmlet scale to that of a commercial-scale farm representative of the study area. This allowed the analysis to be extended from simple enterprise gross margins to the more useful cash flow analysis for a farm as a whole. A comparison of the two approaches showed the importance of understanding the meaning of the financial measures used. In terms of gross margins, the full-scale Farm A performed considerably better than Farm B or Farm C. Farm A also produced more wool and beef per hectare than Farm B or Farm C. But in terms of cash flow, Farm B was far superior to Farm A because the latter was not able to cover its high level of fixed costs, due to its high investments in pastures and soil fertility within the duration of the trial and thus experienced negative cash balances for most of the period 2000-2005. Farm C was inferior to Farm B in business returns due to a number of factors such as the grazing rest period being too long, with high stocking densities resulting in lower liveweights for both sheep and cattle and lower wool cut per head for sheep. The below-average rainfall conditions experienced during 2000-2006 meant that direct economic analysis of the experimental results did not include the potentially higher returns from average or above-average rainfall years that may have allowed Farm A to pay its debt. This suggested that some modelling was needed to evaluate the three farm systems under a wider range of conditions.

Scott *et al.* (2012a) introduced climatic variability into the analysis by using a stochastic discounted cash flow model based on the Cicerone farmlet data. The analysis evaluated Farms A
and B at a commercial scale over 20 years, so that the return on investment could be evaluated. In this case, over a period of 20 years, Farm A was found to be more profitable but also more ‘risky’ (variable), especially at the highest stocking rate explored (15 dse/ha). This indicated there was a need to understand the trade-offs between risks and returns and led to further economic analyses.

Behrendt et al. (2012b) studied the risk-return trade-off in the context of pasture persistence and fertiliser application under climatic uncertainty through a model calibrated using the results from the Cicerone farmlet experiment. The study found that it was economically efficient to reduce both fertiliser inputs and stocking rates with increasing fertiliser costs, which also reduced the variability of returns (or the riskiness of the system). Although this strategy maintained similar levels of total available pasture and per head livestock performance, it led to a reduction in the persistence of desirable species within the sward, which could affect future returns. These results revealed the importance of embedding risk in the decision process, so that decisions can be adjusted as climatic variability unfolds.

Behrendt et al. (2012a) built upon the previous analysis by embedding risk into the decision process to allow optimisation methods to distinguish between strategic decisions involving long timeframes and tactical decisions that can be adjusted over the short-term. They argued that, in evaluating the benefits of adopting alternative technologies, we way in which risk interacts with management must be considered. Their study examined the conflicting goals of maximising profit while achieving persistence of desirable species within a grazing system by deriving optimal decision rules for the seasonal management of a paddock in the presence of climatic uncertainty.

Results showed the conditions under which a pasture should be renovated, given a grazing rest, or have its stocking rate reduced, based on available pasture and its composition at the start of each season. Typically, the stocking rate decision rule was driven by quantities of available pasture in spring, whereas during summer, autumn and winter the decision was influenced by both the pasture mass and the proportion of desirable species in the sward. The lowest stocking rates tended to occur during winter and summer, with the highest during spring. As such, a seasonal savings and consumption pattern was derived that was optimal for the given economic conditions. The re-
sowing of pastures was identified to be optimal only under severely degraded states of the pasture resource, and was most prominent in autumn and winter. These findings provide a general framework for evaluating the performance of grazing systems under climatic uncertainty whilst taking pasture persistence into account.

Climate constraints. Details of the rainfall and temperature experienced over the experimental period and their relationship to the long-term climatic record have been provided by Behrendt et al. (2012c). In brief, the trial experienced drier-than-average soil moisture conditions and suffered from more frequent and more severe frosts than average. As explained in that paper, the results from the farmlet trial needed to be interpreted with that knowledge; this is the reason that the outcomes from the modelling were important to understanding the findings in the context of longer timeframes.

Integrative discussion

As large grazing experiments experience considerable variation over space and with changing climatic conditions over time, one cannot expect such experiments to have great precision (Spedding and Brockington 1976). Our experience accords with Tanaka et al. (2008) who stated that research on farming systems which attempts to integrate multi-disciplinary strands can be extremely difficult to fund, carry out, statistically analyse and publish. The integration of the multiple findings from this research has been a challenge for all project participants including the livestock producers who led this Project. Also, during the conduct of this farmlet experiment, there were unavoidable compromises that had to be made to achieve a balance between practical relevance and scientific rigour.

Whilst many farming system studies have been useful, some have failed to adequately mimic the practices of commercially relevant farming systems (Thomson et al. 1995). In contrast, the Cicerone farmlet experiment was designed and found to be highly relevant to producer members (Edwards et al. 2012).

Results indicated that the relative performance of the three farmlets diverged considerably over the duration of the experiment and over a wide array of criteria. The strategy of pasture renovation
with higher soil fertility employed on farmlet A resulted in a substantial improvement in overall performance compared to farmlets B and C which were similar overall. This is consistent with the findings of Waller et al. (2001) who found that greater increases in animal production came about by upgrading pastures than through grazing management.

The integrated results of the Cicerone farmlet experiment were also, to a large extent, consistent with the results of the national Sustainable Grazing Systems (SGS) experiment. Thus, as reported by Sanford et al. (2003), there was a large effect of soil phosphorus, botanical composition, legume content and stocking rate. Whereas the SGS trial used modelling to suggest that rotational grazing was unlikely to markedly increase pasture production, the Cicerone farmlet experiment confirmed this experimentally. Compared with flexible rotational grazing, intensive rotational grazing did not lift pasture growth substantially over the duration of the trial and resulted in generally lower per head and per hectare animal production. In another SGS study, Chapman et al. (2003) concluded that ‘neither grazing method explored will optimise system performance under all conditions’ because rigid grazing rules impact on both pastures and animals. Overall, they concluded that graziers need to strive for both high per-head animal performance as well as high perennial grass persistence in order to capture the growth and environmental benefits attributed to that pasture component. They suggested that farms might employ more tactical grazing strategies that combine set stocking and rotational systems on different parts of their farms at different times, in order to ensure high per head performance.

The Cicerone experiment compared different grazing management systems to those studied by Chapman et al. (2003). Whereas they compared low and high rates of fertiliser application (6.4 and 25 kg P/ha/year respectively), the Cicerone farmlet experiment was managed to achieve either moderate or high levels of soil fertility, based on soil tests. For comparison, the annual rates of fertiliser applied to farmlets B and C were approximately 4.9 and 4.3 kg P/ha respectively whereas farmlet A received approximately 13.1 kg P/ha/year (Guppy et al. 2012). It is noteworthy that the ‘higher’ level of P application employed on farmlet A was not ‘high’ compared to many other studies of pasture fertilisers in Australia.
In a study of different grazing strategies in northern Queensland, O'Reagain et al. (2011) found that, under variable climatic conditions, the best financial and sustainable outcomes over the long-term were achieved through a variable stocking strategy that allowed the adjustment of stocking rate early in each dry season. Such a system is similar to the flexible grazing management employed on farmlets A and B in this experiment. However, in view of the high costs incurred in the initial years on farmlet A and the pasture degradation that developed over time on farmlet B, it is clear that decisions need to be made that retain desirable pasture species in the pasture in such a way that the life of a pasture is extended towards a region of optimal condition and management (Behrendt et al. 2012a).

In a replicated grazing study of native pastures on the NW Slopes of NSW, Lodge et al. (2003) found that, compared with continuous grazing, rotational grazing or the addition of legume and fertilizer resulted in substantial improvements to the production and sustainability of those pastures. Research conducted on a site adjacent to the Cicerone farmlet experiment found that a combination of a persistent legume (white clover) and a strongly perennial temperate grass (phalaris) had considerable sustainability benefits. Thus, McLeod et al. (2006) found that such a pasture had a deeper rooting depth which enabled more soil water extraction which was associated with greater sustainability characteristics (Scott et al. 2000) than either a phalaris-dominant pasture or a degraded pasture. Also, on the Central Tablelands of NSW, sown perennial grass pastures were found to contribute to sustainability, provided that they last long enough to provide positive economic returns (Dowling et al. 2006).

We acknowledge that, due to a lack of resources (Scott et al. 2012c), insufficient measurements relating to sustainability, such as the indirect effects of the state of pastures on ground-water, soil acidification and erosion over the long-term, were undertaken within the farmlet experiment. As noted by Jones et al. (1995) and Saul and Chapman (2002), there remains a need to evaluate the environmental effects of grazed systems over the long-term as it can take many years for pasture composition and soil fertility to reach steady states.
When seeking answers to broad agroecological questions such as agricultural sustainability, Edwards et al. (1993) pointed out the need for multi-disciplinary approaches which not only include farmers but also take a ‘whole farm level’ approach. Modelling of livestock farming systems has also been suggested as useful in striving for more sustainable systems (Gibon et al. 1999) so long as it is conducted in an inter-disciplinary fashion. The Cicerone farmlet experiment adopted both multi-disciplinary and modelling approaches.

Grazed experiments which have comprehensively measured most components of a farming system are rare. Saul et al. (2011) found that upgraded pastures were associated with an increased stocking rate, higher ewe liveweights, condition scores, lambing and weaning percentages, wool cut per head and fibre diameter but with no increase in supplementary feeding. They also estimated that the break-even point for financial returns on investments in upgraded pastures occurred after 7 years. In addition, they estimated an internal rate of return on pasture improvement of 27%, assuming the upgraded pastures were managed to persist for 12 years. In the case of pasture renovation on the Cicerone farmlet experiment, Behrendt et al. (2006) estimated that the risk efficient rate of pasture replacement was 4% per annum.

Over the duration of the trial, the level of green herbage declined well below critical thresholds on a number of occasions, as shown by pasture assessments (Shakhane et al. 2012a) and the trends in liveweights and supplement fed (Hinch et al. 2012a). The ability of sheep to select a high quality diet decreases as the level of green herbage on offer declines below the critical threshold of 550 kg green DM/ha (Hamilton et al. 1973). Levels of green herbage were affected by rainfall and season, pasture species, soil fertility, stocking rate and grazing management. Thus, the low levels of green herbage on farmlet A (Shakhane et al. 2012a) were exacerbated by the stocking rate being too high at times, as evidenced by the high levels of supplement required in the later years of the trial. Had a greater level of green herbage been retained, it is likely that pasture growth and persistence would have been enhanced with less supplement required (Shakhane et al. 2012a).

Both farmlets B and C recorded higher levels of dead herbage than farmlet A (Shakhane et al. 2012a). On farmlet B, the low levels of green herbage in winter were related to the rise of warm
season grasses and low levels of legume. Farmlet C also experienced similar low levels of green
herbage and digestibility to those on farmlet B but, because only a small proportion of the farmlet
was available to the grazing animals at any one time, the high stock density resulted in intense
competition for and rapid depletion of green herbage during each brief grazing event (Shakhane et
al. 2012c). Chapman et al. (2003) have argued that the rigid application of grazing management
regimes can result in pastures of lower quality. In rotationally grazed systems, there are
compromises and trade-offs which occur between pasture and animal production such as the lower
legume levels and lower levels of per head and per hectare production (Saul and Chapman 2002).

Hall et al. (2011) compared three grazing systems, from continuous grazing through to
intensive grazing, under extensive commercial conditions in Queensland and found that diet
quality tended to be lower in the more intensive grazing systems. Others too have found that
longer grazing rest periods can result in lower quality herbage because of a higher proportion of
stem to digestible leaf (Waller et al. 2001).

Critique of the three farmlet management systems

The control farmlet (B), which was managed according to guidelines considered typical by the
region’s livestock producers, was found to have the highest cash position at the end of the trial.
This was achieved largely by accumulating income through employing a modest stocking rate and
constraining expenditure. In doing so, it achieved high per head weight gains and performed best
in terms of lambs marked per ewe joined and in lamb mortality. However, in other respects it was
found wanting, especially in its pastures, which became degraded over time, with low levels of
legume, declining levels of sown perennial grasses, increasing levels of warm season grasses and
evidence of patch grazing and increased broadleaf weeds in all paddocks except one which was
renovated in 2004 (Shakhane et al. 2012b). Thus, in spite of its superior financial position, we
contend that this farmlet represents the least sustainable management option.

In contrast, farmlet A, which benefited substantially from renovated pastures and higher soil
fertility, suffered financially from the high rate of pasture renovation (29% of the farmlet in the
first year). This was largely an artefact of Project management which determined that the farmlets
had to be developed quickly so that differences between farmlets would emerge over a short

timeframe. Farmlet A also suffered financially due to the cost of sowing two paddocks of so-
called ‘high performance’ pastures based on Italian ryegrass, which producer members wanted

investigated. In both cases, the Italian ryegrass pastures failed to persist longer than 18 months and

needed to be re-sown to perennial pastures.

As noted by Carter and Day (1970), there needs to be a sufficient financial incentive if

producers are to consider a more productive strategy, such as increased stocking rates, with its

inherent risks and need for greater managerial skill. The modelling (Behrendt et al. 2006) and

economic risk (Scott et al. 2012a) studies conducted, confirmed that optimal solutions demand that

pastures be managed to persist over long-periods in order to justify investment in such

technologies. Thus, assuming a rate of pasture renovation at the most risk efficient level of 4% per

annum (Behrendt et al. 2006) and a stocking rate of either 11.9 or 15 dse/ha, farmlet A was shown

to have the potential for a substantially higher cumulative net present value over a 20 year horizon

than an analysis based on the artificially high rate of pasture renovation during this trial (Scott et

al. 2012a); the risk level for the 11.9 dse/ha scenario was substantially lower than for the 15 dse/ha

scenario. As pointed out by Scott et al. (2012a), given some better seasons, this farmlet had much

more potential for ‘upside risk’, or more favourable economic outcomes, compared to either of the

other farmlets.

In terms of meeting some criteria which are associated with ‘sustainability’ (Scott et al. 2000),
farmlet A achieved higher levels of soil nutrients, temperate perennial grasses, legumes and higher

per hectare livestock production than the other farmlets whilst also achieving high levels of animal

production on a per head basis. However, it must be acknowledged that these increases came at a

considerable cost and that insufficient environmental factors were able to be measured. Thus,

although farmlet A reached a substantially higher average index (0.91) over all measured

parameters by the latter half of the experiment compared to farmlets B and C (0.76 and 0.76

respectively), it is difficult to conclude that any one system would be likely to be more profitable

or sustainable over the long-term.
Regarding the higher numbers of gastrointestinal nematodes on both farmlets A and B compared to farmlet C (Walkden-Brown et al. 2012), it is clear that the two farmlets which employed flexible rotational grazing were constrained substantially by needing to graze multiple mobs across no more than 8 paddocks per farmlet. No doubt, better control could have been achieved if more paddocks had been allowed and if more deliberate use had been made of cattle to graze paddocks before sheep, as recommended by Niezen et al. (1996). The question therefore arises, how many paddocks would be optimal for such flexible rotational grazing systems?

Through modelling, Morley (1968) predicted that, from the point of view of pasture growth alone, the optimum number of paddocks for a rotational system would probably be less than 10. In view of the experience of this farmlet trial, with its desire of taking into account a wider array of factors, including multiple mobs and control of internal parasites, we suggest that it is likely that the optimum number of paddocks would be well above 10 per farm.

Whilst the intensive rotational grazing regime of farmlet C clearly resulted in superior control of gastrointestinal nematodes, this management regime did not result in increased pasture production, higher soil phosphorus, higher stocking rates or higher profit. Whilst the differences between farmlets in green herbage were not significant, the digestibility of both green and dead herbage was significantly lower on farmlet C (and B) than on farmlet A. Nevertheless, farmlet C had a slightly finer wool fibre diameter, slightly stronger staple strength for ewes, needed less supplementary feeding and had slightly higher ground cover. Due to the nature of intensive grazing systems, a much smaller proportion of paddocks on farmlet C was grazed at any one time; this higher stock density during grazing is likely to be the main reason for the lower animal performance on farmlet C as the animals had to compete intensely for the available green herbage. It is also likely that part of the reason for the lower animal performance on farmlet C was the low levels of legume on this farmlet which were associated with low soil nitrogen levels which would in turn have constrained pasture growth in winter.

It is interesting to speculate how the performance of farmlet C might have been enhanced. One suggestion from a Cicerone member, late in the trial period, was that a ‘higher input’ version of
farmlet C (similar to the inputs on farmlet A) should be studied (Edwards et al. 2012).

Unfortunately, no funding was available to create this fourth farmlet to allow such a comparison.

As with the other farmlets, it would also have been interesting to observe and measure the consequences of some better seasons on farmlet C though we contend that the moderate soil fertility, the low level of legumes and the moderate proportion of temperate species on this farmlet would have limited the potential for high pasture growth rates.

Implications for optimal management of grazing enterprises

In spite of the trial’s limited duration of 6.5 years and the constraints imposed by the drier-than-average conditions, the consideration of the multiple lines of accumulated evidence, together with modelling and optimisation procedures, has yielded a number of important outcomes from this body of work. Whereas modelling analyses suggested that farmlet A had the greater potential for profit over the long-term, given a more representative climatic experience, one needs to reflect on how that might be achieved with lower levels of risk. If, for the creation of optimal net worth outcomes, pastures need to be maintained to persist over some 25 years (equivalent to a 4% per annum replacement rate) this would mean that managers would need to pay much greater attention to the maintenance of soil fertility and the strategic resting of pastures before they reach a critical degraded state (Behrendt et al. 2012a).

The challenge for graziers is to ‘simultaneously balance many balls in the air’ (Williams 1994). Based on the interacting factors described in this paper, we suggest it is important to distinguish between the short-term, tactical ‘balls’ and the longer-term strategic ‘balls’. Some tactical decisions include moving stock between paddocks, supplementary feeding and drenching. In contrast, strategic decisions can be crucial for delivering optimal results over the long-term. Such decisions include: maintaining soil fertility and an adequate level of legumes through nutrition and grazing management to help manipulate pasture composition, the gradual renovation of pastures to enhance the proportion of desirable species, integrated parasite management, allowing increases in stocking rate only when the potential for pasture growth has been enhanced, the creation of more
protection for lambing ewes, and the provision of sufficient paddocks to facilitate rotation when necessary.

Decisions regarding changes to stocking rate would be aided greatly by being able to regularly monitor all paddocks through remote sensing in order to estimate potential pasture growth rate (Donald et al. 2012) which is a fundamental parameter governing stocking rates. Regular and timely estimates of paddock and farm-scale green herbage mass, which can also be derived from satellite images (Edirisinghe et al. 2011), would also greatly assist graziers to ensure that critical levels of green herbage are always available to their stock as a means of optimising pasture utilisation whilst avoiding over-grazing which can threaten pasture persistence and limit the need for supplementary feeding.

In addition, regular monitoring of liveweights and condition scores would enable the detection of livestock performance and allow changes of stocking rates or paddock moves to be made in a more timely way. Options for reducing worm burdens in sheep within flexible rotational grazing systems include preparation of ‘clean’ pastures for young, susceptible, stock (Bailey et al. 2009), mixed grazing with cattle or sheep of lesser susceptibility (wethers), and lightly grazing pasture with cattle prior to grazing with sheep.

Ultimately, improved tools need to be developed to assist graziers to work their way through these decision dilemmas. There is a need for more robust and timely delivery of optimal solutions which take into account the different rates of change of the various factors which can be controlled by management so that long-term profits can be realised without damage to the natural resources which support grazing enterprises.

This paper has highlighted the complexity of managing grazing enterprises and the problems of making any simple, prescriptive recommendations. Grazed farms are challenging agroecosystems that require a wide range of measurements, skills and observations that need to be continually reviewed to achieve desired outcomes. In addition, conditions and circumstances vary from paddock to paddock, from farm to farm, whilst skill levels and goals vary from one livestock producer to another. Issues that might appear to be simple – such as maintaining a desirable
pasture composition – are affected not only by the species and their relative growth rates across different seasons but also by soil type, soil fertility, slope, aspect, rainfall and temperature, grazing rest, livestock species, livestock class, ground cover and the manager’s attitude to risk.

The particular version of intensive rotational grazing tested here (on farmlet C) provided substantial benefits in terms of animal health but the level of animal production supported by this system was overly constrained by the limited dietary choice offered grazing animals and the low levels of legume which restricted the protein supply for livestock. The typically managed farmlet (B), which had the best cash position over the relatively short duration of this trial, was found to have developed several negative attributes which suggests that it may not be a profitable or sustainable alternative management system over the long-term. In answer to the hypothesis put earlier in this paper, we conclude that more profitable and sustainable outcomes are most likely to arise from grazing enterprises which are proactively managed towards optimal outcomes which include the maintenance of sufficient desirable perennial grasses, combined with adequate legume content and are supported by the maintenance of soil fertility whilst employing flexible rotational grazing.

Acknowledgements

This Project was generously funded by Australian Wool Innovation with additional financial support from the Australian Sheep CRC and the University of New England. It benefited substantially from the substantial in-kind contributions of NSW Department of Primary Industries, CSIRO Livestock Industries, Betty Hall Pty Ltd and the University of New England. Whilst too numerous to mention individually here, the livestock producer members of the Cicerone Project were generous in their support. We are indebted to those many collaborators who produced the results which we have summarised from the component papers of this Special Issue.

References

Cawood M (2011) Grazing systems study "missed the point". In 'The Land'. December 1, 2011.

http://www.mla.com.au/CustomControls/PaymentGateway/ViewFile.aspx?GYyXLNalmke0hkUGMDR0hq7ke55w29oGRr/R/qg3A0JsOM005VLFzKnPrSxthKQT3EYMKKAfsht7d1Tn3BqiA==. 96 pp.

Scott JM, Gaden CA, Edwards C, Paull DR, Marchant RS, Hoad J, Sutherland H, Coventry T, Dutton P (2012c) Selection of experimental treatments, methods used and evolution of

Table 1. Average data from farmlets A, B and C early in the trial (2000 to 2001) for a wide array of soil, pasture, ground cover, livestock production, animal health, farmlet productivity and financial measurements and proportions of the highest data value of each measurement, normalised on a 0-1 scale.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Units</th>
<th>Aim (High/Low)</th>
<th>Year(s)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Proportion of maximum value (for aim of H)/minimum (for aim of L)</th>
<th>Source of data from related publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil-N</td>
<td>mg N/kg soil</td>
<td>H</td>
<td>2001</td>
<td>17.4</td>
<td>5.2</td>
<td>13.4</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Soil-P</td>
<td>mg P/kg soil</td>
<td>H</td>
<td>2001</td>
<td>29.5</td>
<td>14.5</td>
<td>21.0</td>
<td>1.00</td>
<td>0.49</td>
</tr>
<tr>
<td>Soil-S</td>
<td>mg S/kg soil</td>
<td>H</td>
<td>2001</td>
<td>14.5</td>
<td>6.5</td>
<td>8.0</td>
<td>1.00</td>
<td>0.45</td>
</tr>
<tr>
<td>Pasture layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sown perennial grasses</td>
<td>%</td>
<td>H</td>
<td>2000</td>
<td>51.7</td>
<td>30.5</td>
<td>43.9</td>
<td>1.00</td>
<td>0.59</td>
</tr>
<tr>
<td>Legume</td>
<td>%</td>
<td>H</td>
<td>2000</td>
<td>1.4</td>
<td>3.7</td>
<td>3.1</td>
<td>0.38</td>
<td>1.00</td>
</tr>
<tr>
<td>Warm season grasses</td>
<td>%</td>
<td>L</td>
<td>2000</td>
<td>14.9</td>
<td>25.6</td>
<td>21.3</td>
<td>1.00</td>
<td>0.58</td>
</tr>
<tr>
<td>Total herbage mass</td>
<td>kg DM/ha</td>
<td>H</td>
<td>2000-2001</td>
<td>3402</td>
<td>2791</td>
<td>3350</td>
<td>1.00</td>
<td>0.82</td>
</tr>
<tr>
<td>Greenness (satellite NDVI)</td>
<td>NDVI</td>
<td>H</td>
<td>2000</td>
<td>321</td>
<td>341</td>
<td>341</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>Livestock production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greasy fleece weight/head (ewes)</td>
<td>kg/hd</td>
<td>H</td>
<td>2001</td>
<td>3.2</td>
<td>3.2</td>
<td>3.1</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>Fibre diameter (ewes)</td>
<td>microns</td>
<td>L</td>
<td>2001</td>
<td>19.4</td>
<td>19.1</td>
<td>19.2</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Staple length (ewes)</td>
<td>mm</td>
<td>H</td>
<td>2001</td>
<td>60.7</td>
<td>59.5</td>
<td>60.6</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>Liveweight/head (ewes)</td>
<td>kg/hd</td>
<td>H</td>
<td>2000-2001</td>
<td>43.1</td>
<td>43.6</td>
<td>43.3</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Fat score/head (ewes)</td>
<td>score (1-5)</td>
<td>H</td>
<td>2000-2001</td>
<td>2.6</td>
<td>2.7</td>
<td>2.7</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>Liveweight/head (weaners)</td>
<td>kg/hd</td>
<td>H</td>
<td>2000 drop</td>
<td>20.0</td>
<td>18.8</td>
<td>18.5</td>
<td>1.00</td>
<td>0.94</td>
</tr>
<tr>
<td>Parasites (faecal egg count)</td>
<td>number/gram</td>
<td>L</td>
<td>2000-2001</td>
<td>164.3</td>
<td>203.2</td>
<td>224.7</td>
<td>1.00</td>
<td>0.81</td>
</tr>
<tr>
<td>Number of drenches/mob/year</td>
<td>number/year</td>
<td>L</td>
<td>2000</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Farmlet productivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liveweight/ha (weaners)</td>
<td>kg/ha</td>
<td>H</td>
<td>2000 drop</td>
<td>75.0</td>
<td>69.5</td>
<td>61.8</td>
<td>1.00</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Unit</td>
<td>Year</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Greasy fleece weight/ha</td>
<td>kg/ha/yr</td>
<td>H 2001</td>
<td>12.6</td>
<td>11.3</td>
<td>10.8</td>
<td>1.00</td>
<td>0.90</td>
<td>0.86</td>
</tr>
<tr>
<td>Stocking rate (annual average)</td>
<td>dse/ha</td>
<td>H 2000-2001</td>
<td>7.5</td>
<td>6.7</td>
<td>8.2</td>
<td>0.92</td>
<td>0.82</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Financial

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Year</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fodder cost/farm</td>
<td>$/year</td>
<td>L 2000</td>
<td>$4,135</td>
<td>$2,894</td>
<td>$3,791</td>
<td>0.70</td>
<td>1.00</td>
<td>0.76</td>
<td>(Scott et al. 2012b)</td>
</tr>
<tr>
<td>Wool value/ewe</td>
<td>$/hd</td>
<td>H 2000-2001</td>
<td>$31.59</td>
<td>$32.66</td>
<td>$32.75</td>
<td>0.96</td>
<td>1.00</td>
<td>1.00</td>
<td>(Cottle et al. 2012)</td>
</tr>
<tr>
<td>Wool income/ha</td>
<td>$/hd</td>
<td>H 2000-2001</td>
<td>$182</td>
<td>$178</td>
<td>$177</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td>(Cottle et al. 2012)</td>
</tr>
<tr>
<td>Gross margin/ha (full-size farm)</td>
<td>$/ha</td>
<td>H 2000-2001</td>
<td>$215</td>
<td>$230</td>
<td>$181</td>
<td>0.93</td>
<td>1.00</td>
<td>0.79</td>
<td>(Scott et al. 2012b)</td>
</tr>
<tr>
<td>Cash position (full-size farm)</td>
<td>$/farm</td>
<td>H 2000-2001</td>
<td>-$76,393</td>
<td>$118,908</td>
<td>$2,486</td>
<td>0.00</td>
<td>1.00</td>
<td>0.40</td>
<td>(Scott et al. 2012b)</td>
</tr>
<tr>
<td>Equity</td>
<td>%</td>
<td>H 2000-2001</td>
<td>92%</td>
<td>100%</td>
<td>100%</td>
<td>0.92</td>
<td>1.00</td>
<td>1.00</td>
<td>(Scott et al. 2012b)</td>
</tr>
<tr>
<td>Labour per dse</td>
<td>hours/year/</td>
<td>L 2000-2001</td>
<td>35</td>
<td>32</td>
<td>43</td>
<td>0.91</td>
<td>1.00</td>
<td>0.74</td>
<td>(Scott et al. 2012c)</td>
</tr>
<tr>
<td></td>
<td>dse/ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average index</td>
<td></td>
<td></td>
<td>0.91</td>
<td>0.86</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Average data from farmlets A, B and C late in the trial (2003 to 2006) for a wide array of soil, pasture, ground cover, livestock production, animal health, farmlet productivity and financial measurements and proportions of the highest data value of each measurement, normalised on a 0-1 scale.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Units</th>
<th>Aim (High/Low)</th>
<th>Year(s)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Source of data from related publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil layer</td>
<td></td>
</tr>
<tr>
<td>Soil-N</td>
<td>mg N/kg soil</td>
<td>H</td>
<td>2003-2006</td>
<td>24.9</td>
<td>14.1</td>
<td>10.4</td>
<td>1.00</td>
<td>0.57</td>
<td>0.42</td>
<td>(Guppy et al. 2012)</td>
</tr>
<tr>
<td>Soil-P</td>
<td>mg P/kg soil</td>
<td>H</td>
<td>2003-2006</td>
<td>58.1</td>
<td>24.1</td>
<td>30.1</td>
<td>1.00</td>
<td>0.41</td>
<td>0.52</td>
<td>(Guppy et al. 2012)</td>
</tr>
<tr>
<td>Soil-S</td>
<td>mg S/kg soil</td>
<td>H</td>
<td>2003-2006</td>
<td>12.2</td>
<td>6.4</td>
<td>6.8</td>
<td>1.00</td>
<td>0.52</td>
<td>0.56</td>
<td>(Guppy et al. 2012)</td>
</tr>
<tr>
<td>Pasture layer</td>
<td></td>
</tr>
<tr>
<td>Sown perennial grasses</td>
<td>%</td>
<td>H</td>
<td>2005-2006</td>
<td>47.3</td>
<td>17.4</td>
<td>26.7</td>
<td>1.00</td>
<td>0.37</td>
<td>0.57</td>
<td>(Shakhane et al. 2012b)</td>
</tr>
<tr>
<td>Legume</td>
<td>%</td>
<td>H</td>
<td>2005-2006</td>
<td>5.3</td>
<td>1.3</td>
<td>1.6</td>
<td>1.00</td>
<td>0.24</td>
<td>0.30</td>
<td>(Shakhane et al. 2012b)</td>
</tr>
<tr>
<td>Warm season grasses</td>
<td>%</td>
<td>L</td>
<td>2005-2006</td>
<td>15.7</td>
<td>29.6</td>
<td>29.9</td>
<td>1.00</td>
<td>0.53</td>
<td>0.52</td>
<td>(Shakhane et al. 2012b)</td>
</tr>
<tr>
<td>Green dry matter</td>
<td>kg DM/ha</td>
<td>H</td>
<td>2005-2006</td>
<td>942</td>
<td>905</td>
<td>989</td>
<td>0.95</td>
<td>0.91</td>
<td>1.00</td>
<td>(Shakhane et al. 2012a)</td>
</tr>
<tr>
<td>Digestibility of green</td>
<td>%</td>
<td>H</td>
<td>2005-2006</td>
<td>66</td>
<td>55</td>
<td>58</td>
<td>1.00</td>
<td>0.84</td>
<td>0.87</td>
<td>(Shakhane et al. 2012a)</td>
</tr>
<tr>
<td>Dead dry matter</td>
<td>kg DM/ha</td>
<td>L</td>
<td>2005-2006</td>
<td>1048</td>
<td>2131</td>
<td>2055</td>
<td>1.00</td>
<td>0.49</td>
<td>0.51</td>
<td>(Shakhane et al. 2012a)</td>
</tr>
<tr>
<td>Legume dry matter</td>
<td>kg DM/ha</td>
<td>H</td>
<td>2005-2006</td>
<td>51</td>
<td>5</td>
<td>6</td>
<td>1.00</td>
<td>0.10</td>
<td>0.12</td>
<td>(Shakhane et al. 2012a)</td>
</tr>
<tr>
<td>Greenness (satellite NDVI)</td>
<td>NDVI</td>
<td>H</td>
<td></td>
<td>554</td>
<td>481</td>
<td>496</td>
<td>1.00</td>
<td>0.87</td>
<td>0.90</td>
<td>(Donald et al. 2012)</td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
</tr>
<tr>
<td>Ground cover</td>
<td>%</td>
<td>H</td>
<td>2005-2006</td>
<td>88</td>
<td>96</td>
<td>98</td>
<td>0.90</td>
<td>0.98</td>
<td>1.00</td>
<td>(Shakhane et al. 2012a)</td>
</tr>
<tr>
<td>Livestock production</td>
<td></td>
</tr>
<tr>
<td>Greasy fleece weight/head</td>
<td>kg/hd</td>
<td>H</td>
<td>2003-2005</td>
<td>3.6</td>
<td>3.5</td>
<td>3.1</td>
<td>1.00</td>
<td>0.97</td>
<td>0.86</td>
<td>(Cottle et al. 2012)</td>
</tr>
<tr>
<td>Fibre diameter (ewes)</td>
<td>microns</td>
<td>L</td>
<td>2003-2005</td>
<td>18.7</td>
<td>18.5</td>
<td>18.2</td>
<td>0.97</td>
<td>0.98</td>
<td>1.00</td>
<td>(Cottle et al. 2012)</td>
</tr>
<tr>
<td>Staple length (ewes)</td>
<td>mm</td>
<td>H</td>
<td>2003-2005</td>
<td>88.8</td>
<td>86.1</td>
<td>80.9</td>
<td>1.00</td>
<td>0.97</td>
<td>0.91</td>
<td>(Cottle et al. 2012)</td>
</tr>
<tr>
<td>Staple strength (ewes)</td>
<td>N/ktex</td>
<td>H</td>
<td>2003-2005</td>
<td>42.0</td>
<td>40.2</td>
<td>43.9</td>
<td>0.96</td>
<td>0.92</td>
<td>1.00</td>
<td>(Cottle et al. 2012)</td>
</tr>
<tr>
<td>Liveweight/head (ewes)</td>
<td>kg/hd</td>
<td>H</td>
<td>2004-2005</td>
<td>46.3</td>
<td>44.6</td>
<td>42.6</td>
<td>1.00</td>
<td>0.96</td>
<td>0.92</td>
<td>(Hinch et al. 2012a)</td>
</tr>
<tr>
<td>Metric</td>
<td>Unit</td>
<td>Year</td>
<td>Mean</td>
<td>SD</td>
<td>Median</td>
<td>High</td>
<td>Low</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat score/head (ewes)</td>
<td>score (1-5)</td>
<td>H</td>
<td>2004-2005</td>
<td>2.7</td>
<td>2.5</td>
<td>2.5</td>
<td>1.00</td>
<td>0.90</td>
<td>0.91</td>
<td>(Hinch et al. 2012b)</td>
</tr>
<tr>
<td>Pregnancy scan proportion</td>
<td></td>
<td>H</td>
<td>2005</td>
<td>0.98</td>
<td>0.81</td>
<td>0.82</td>
<td>1.00</td>
<td>0.83</td>
<td>0.84</td>
<td>(Hinch et al. 2012b)</td>
</tr>
<tr>
<td>Lambs marked/ewe joined</td>
<td>%</td>
<td>H</td>
<td>2004</td>
<td>85</td>
<td>90</td>
<td>84</td>
<td>0.94</td>
<td>1.00</td>
<td>0.93</td>
<td>(Hinch et al. 2012b)</td>
</tr>
<tr>
<td>Lamb mortality (scan to weaning)</td>
<td>%</td>
<td>L</td>
<td></td>
<td>31</td>
<td>17</td>
<td>19</td>
<td>0.55</td>
<td>1.00</td>
<td>0.89</td>
<td>(Hinch et al. 2012b)</td>
</tr>
<tr>
<td>Liveweight/head (weaners)</td>
<td>kg/hd</td>
<td>H</td>
<td>2004 drop</td>
<td>18.0</td>
<td>20.0</td>
<td>19.6</td>
<td>0.90</td>
<td>1.00</td>
<td>0.98</td>
<td>(Hinch et al. 2012a)</td>
</tr>
<tr>
<td>Liveweight gain/head (cattle)</td>
<td>kg/hd/day</td>
<td>H</td>
<td>2004-2005</td>
<td>0.97</td>
<td>0.95</td>
<td>0.89</td>
<td>1.00</td>
<td>0.98</td>
<td>0.92</td>
<td>(Hinch et al. 2012a)</td>
</tr>
<tr>
<td>Parasites (faecal egg count)</td>
<td>number/gram</td>
<td>L</td>
<td>2002-2006</td>
<td>594.4</td>
<td>790.2</td>
<td>367.9</td>
<td>0.62</td>
<td>0.47</td>
<td>1.00</td>
<td>(Walkden-Brown et al. 2012)</td>
</tr>
<tr>
<td>Number of drenches/mob/year</td>
<td>number/year</td>
<td>L</td>
<td>2005-2006</td>
<td>2.7</td>
<td>3.0</td>
<td>1.9</td>
<td>0.70</td>
<td>0.62</td>
<td>1.00</td>
<td>(Walkden-Brown et al. 2012)</td>
</tr>
<tr>
<td>Liveweight/ha (weaners)</td>
<td>kg/ha</td>
<td>H</td>
<td>2004 drop</td>
<td>89.7</td>
<td>64.0</td>
<td>54.7</td>
<td>1.00</td>
<td>0.71</td>
<td>0.61</td>
<td>(Hinch et al. 2012a)</td>
</tr>
<tr>
<td>Greasy fleece weight/ha</td>
<td>kg/ha/yr</td>
<td>H</td>
<td>2004-2005</td>
<td>23.4</td>
<td>17.1</td>
<td>13.5</td>
<td>1.00</td>
<td>0.73</td>
<td>0.57</td>
<td>(Cottle et al. 2012)</td>
</tr>
<tr>
<td>Liveweight gain/ha (cattle)</td>
<td>kg/ha/yr</td>
<td>H</td>
<td>2004-2005</td>
<td>84.49</td>
<td>71.40</td>
<td>78.72</td>
<td>1.00</td>
<td>0.85</td>
<td>0.93</td>
<td>(Hinch et al. 2012a)</td>
</tr>
<tr>
<td>Stocking rate (annual average)</td>
<td>dse/ha</td>
<td>H</td>
<td>2004-2005</td>
<td>11.9</td>
<td>8.2</td>
<td>7.6</td>
<td>1.00</td>
<td>0.69</td>
<td>0.63</td>
<td>(Hinch et al. 2012a)</td>
</tr>
<tr>
<td>Silage produced</td>
<td>t Digestible DM/ha</td>
<td>H</td>
<td>2005</td>
<td>20.2</td>
<td>0.0</td>
<td>0.0</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>(Shakhane et al. 2012a)</td>
</tr>
<tr>
<td>Fodder cost/farmlet</td>
<td>$/year</td>
<td>L</td>
<td>2005</td>
<td>$13,761</td>
<td>$8,247</td>
<td>$7,448</td>
<td>0.54</td>
<td>0.90</td>
<td>1.00</td>
<td>(Scott et al. 2012b)</td>
</tr>
<tr>
<td>Wool value/ewe</td>
<td>$/hd</td>
<td>H</td>
<td>2003-2005</td>
<td>$39.80</td>
<td>$41.05</td>
<td>$38.06</td>
<td>0.97</td>
<td>1.00</td>
<td>0.93</td>
<td>(Cottle et al. 2012)</td>
</tr>
<tr>
<td>Wool income/ha</td>
<td>$/ha</td>
<td>H</td>
<td>2003-2005</td>
<td>$303</td>
<td>$215</td>
<td>$180</td>
<td>1.00</td>
<td>0.71</td>
<td>0.59</td>
<td>(Cottle et al. 2012)</td>
</tr>
<tr>
<td>Gross margin/ha (full-size farm)</td>
<td>$/ha</td>
<td>H</td>
<td>2003-2005</td>
<td>$303</td>
<td>$241</td>
<td>$214</td>
<td>1.00</td>
<td>0.79</td>
<td>0.71</td>
<td>(Scott et al. 2012b)</td>
</tr>
<tr>
<td>Cash position (full-size farm)</td>
<td>$/farm</td>
<td>H</td>
<td>2003-2005</td>
<td>-$152,316</td>
<td>$461,125</td>
<td>$241,595</td>
<td>0.00</td>
<td>1.00</td>
<td>0.64</td>
<td>(Scott et al. 2012b)</td>
</tr>
<tr>
<td>Equity</td>
<td>%</td>
<td>H</td>
<td>2003-2005</td>
<td>92%</td>
<td>100%</td>
<td>100%</td>
<td>0.92</td>
<td>1.00</td>
<td>1.00</td>
<td>(Scott et al. 2012b)</td>
</tr>
<tr>
<td>Labour per dse</td>
<td>hours/year/ dse/ha</td>
<td>H</td>
<td>2005</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>1.00</td>
<td>0.90</td>
<td>0.82</td>
<td>(Scott et al. 2012c)</td>
</tr>
<tr>
<td>Average index</td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
<td>0.76</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Diagram showing relativity between farmlets A, B and C early in the trial (from 2000 to 2001) for a wide array of soil, pasture, ground cover, livestock production, animal health, farmlet productivity and financial measurements, normalised to a 0-1 scale (proportions extracted from Table 1).
Figure 2. Diagram showing relativity between farmlets A, B and C late in the trial (from 2003 to 2006) for a wide array of soil, pasture, ground cover, livestock production, animal health, farmlet productivity and financial measurements, normalised to a 0-1 scale (proportions extracted from Table 2).